Mecha: A Neural-Symbolic Open-Set Homogeneous Decision Fusion Approach for Zero-Day Malware Similarity Detection

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Software Engineering Pub Date : 2025-01-20 DOI:10.1109/TSE.2025.3531210
Christopher Molloy;Jeremy Banks;Steven H. H. Ding;Furkan Alaca;Philippe Charland;Andrew Walenstein
{"title":"Mecha: A Neural-Symbolic Open-Set Homogeneous Decision Fusion Approach for Zero-Day Malware Similarity Detection","authors":"Christopher Molloy;Jeremy Banks;Steven H. H. Ding;Furkan Alaca;Philippe Charland;Andrew Walenstein","doi":"10.1109/TSE.2025.3531210","DOIUrl":null,"url":null,"abstract":"With increasing numbers of novel malware each year, tools are required for efficient and accurate variant matching under the same family, for the purpose of effective proactive threat detection, retro-hunting, and attack campaign tracking. All of the state-of-the-art Deep Learning (DL) approaches assume that the incoming samples originate from known families and incorrectly identify novel families. Additionally, most of the existing solutions that leverage the Siamese Neural Network architecture either rely on pair-wise comparisons or computationally expensive preprocessing steps that are not scalable to a real-world malware triage volume requirement. We propose a different route, Mecha, a Neural-Symbolic Machine Learning (ML) system for malware variant matching and zero-day family detection. Mecha is comprised of an embedding network trained in two different scenarios for byte string embedding and an open-set approximate nearest neighbour algorithm for variant matching and zero-day detection. Our embedding network uses triplet loss for embedding generation and reinforcement-based Expectation Maximization (EM) learning for full deployment optimization. We conduct multiple in-sample and out-of-sample experiments to demonstrate the model's generalizability toward novel variants and families. We also show that Mecha can detect samples outside the known set of malware samples with an accuracy greater than 0.990.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 2","pages":"621-637"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10847580/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing numbers of novel malware each year, tools are required for efficient and accurate variant matching under the same family, for the purpose of effective proactive threat detection, retro-hunting, and attack campaign tracking. All of the state-of-the-art Deep Learning (DL) approaches assume that the incoming samples originate from known families and incorrectly identify novel families. Additionally, most of the existing solutions that leverage the Siamese Neural Network architecture either rely on pair-wise comparisons or computationally expensive preprocessing steps that are not scalable to a real-world malware triage volume requirement. We propose a different route, Mecha, a Neural-Symbolic Machine Learning (ML) system for malware variant matching and zero-day family detection. Mecha is comprised of an embedding network trained in two different scenarios for byte string embedding and an open-set approximate nearest neighbour algorithm for variant matching and zero-day detection. Our embedding network uses triplet loss for embedding generation and reinforcement-based Expectation Maximization (EM) learning for full deployment optimization. We conduct multiple in-sample and out-of-sample experiments to demonstrate the model's generalizability toward novel variants and families. We also show that Mecha can detect samples outside the known set of malware samples with an accuracy greater than 0.990.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机制:一种用于零日恶意软件相似度检测的神经符号开集同构决策融合方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering 工程技术-工程:电子与电气
CiteScore
9.70
自引率
10.80%
发文量
724
审稿时长
6 months
期刊介绍: IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include: a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models. b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects. c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards. d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues. e) System issues: Hardware-software trade-offs. f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.
期刊最新文献
50 Years of Transactions on Software Engineering From First Patch to Long-Term Contributor: Evaluating Onboarding Recommendations for OSS Newcomers Is Hyper-Parameter Optimization Different for Software Analytics? Demystifying Rust Unstable Features at Ecosystem Scale: Evolution, Propagation, and Mitigation SmartUpdater: Enabling Transparent, Automated, and Secure Maintenance of Stateful Smart Contracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1