Ning Jiang, Congwen Zhu, Zeng-Zhen Hu, Michael J. McPhaden, Tao Lian, Chen Zhou, Weihong Qian, Deliang Chen
{"title":"El Niño and Sea Surface Temperature Pattern Effects Lead to Historically High Global Mean Surface Temperatures in 2023","authors":"Ning Jiang, Congwen Zhu, Zeng-Zhen Hu, Michael J. McPhaden, Tao Lian, Chen Zhou, Weihong Qian, Deliang Chen","doi":"10.1029/2024gl113733","DOIUrl":null,"url":null,"abstract":"In 2023, the world experienced its highest ever global mean surface temperature (GMST). Our study underscores the pivotal significance of El Niño and sea surface temperature (SST) warming as the fundamental causes. Interannually, the increment of GMST in 2023 comprised two phases: first, gradual ocean warming associated with El Niño and the North Atlantic from January to August; second, a continued rise in land temperatures in the mid-to-high latitude regions from September onwards, influenced by SST patterns. Notably, the maturation of El Niño prolonged warming in North America through excitation of the Pacific-North American teleconnection. During the most recent 15 years, GMST has entered an accelerated warming period, primarily driven by rapid SST warming trends in the tropical Indian Ocean, tropical Atlantic, subtropical North Pacific, and North Atlantic. These decadal warming patterns, combined with El Niño, may further increase GMST, with 2023 as a particularly striking example.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"32 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl113733","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In 2023, the world experienced its highest ever global mean surface temperature (GMST). Our study underscores the pivotal significance of El Niño and sea surface temperature (SST) warming as the fundamental causes. Interannually, the increment of GMST in 2023 comprised two phases: first, gradual ocean warming associated with El Niño and the North Atlantic from January to August; second, a continued rise in land temperatures in the mid-to-high latitude regions from September onwards, influenced by SST patterns. Notably, the maturation of El Niño prolonged warming in North America through excitation of the Pacific-North American teleconnection. During the most recent 15 years, GMST has entered an accelerated warming period, primarily driven by rapid SST warming trends in the tropical Indian Ocean, tropical Atlantic, subtropical North Pacific, and North Atlantic. These decadal warming patterns, combined with El Niño, may further increase GMST, with 2023 as a particularly striking example.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.