Recovery of palladium from solution by defective Carbon nitride and Regenerating as a hydrogenation catalysis

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-01-22 DOI:10.1016/j.seppur.2025.131685
Yilong Zhu, Huifang Xing, Shan Ni, Ke Xu, ZhaoXiang Zhong, Liangrong Yang
{"title":"Recovery of palladium from solution by defective Carbon nitride and Regenerating as a hydrogenation catalysis","authors":"Yilong Zhu, Huifang Xing, Shan Ni, Ke Xu, ZhaoXiang Zhong, Liangrong Yang","doi":"10.1016/j.seppur.2025.131685","DOIUrl":null,"url":null,"abstract":"The recycling of precious materials, such as palladium (Pd), was repeatedly documented as essential for a sustainable future with respect to the environment and energy production. However, high-efficiency extraction presented significant challenges. In this work, a surface hydroxyl regulation strategy was used to prepare a defective carbon nitride (CN) with a high specific surface area and hierarchical porosity through cobalt (Co)-doping. Characterization confirmed the successful synthesis of the adsorbent. The results indicated that the optimal pH for the adsorption process was 5.5, adsorption kinetics and isotherms of Pd on the adsorbent suggested that the adsorption followed a pseudo-second-order model and the Langmuir model, respectively. The maximum adsorption capacity reached up to 529.1 mg·g<sup>–1</sup>. In addition, it showed high affinity for Pd ions, the <em>K<sub>d</sub></em> value was 4.1 × 10<sup>4</sup> ml·g<sup>–1</sup>. After Pd adsorption, due to the presence of abundant and uniformly dispersed Pd and Co particles which further facilitated cooperative catalysis on the surface of adsorbent, As a result, the Co-CN-Pd was reused as a catalyst for p-nitrophenol hydrogenation. It achieved a turnover frequency (TOF) as high as 1032.6 h<sup>–1</sup>, significantly surpassing other catalysts reported in the literature. Overall, this novel adsorbent presented broad application prospects in the field of Pd recovery and reuse.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"9 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131685","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recycling of precious materials, such as palladium (Pd), was repeatedly documented as essential for a sustainable future with respect to the environment and energy production. However, high-efficiency extraction presented significant challenges. In this work, a surface hydroxyl regulation strategy was used to prepare a defective carbon nitride (CN) with a high specific surface area and hierarchical porosity through cobalt (Co)-doping. Characterization confirmed the successful synthesis of the adsorbent. The results indicated that the optimal pH for the adsorption process was 5.5, adsorption kinetics and isotherms of Pd on the adsorbent suggested that the adsorption followed a pseudo-second-order model and the Langmuir model, respectively. The maximum adsorption capacity reached up to 529.1 mg·g–1. In addition, it showed high affinity for Pd ions, the Kd value was 4.1 × 104 ml·g–1. After Pd adsorption, due to the presence of abundant and uniformly dispersed Pd and Co particles which further facilitated cooperative catalysis on the surface of adsorbent, As a result, the Co-CN-Pd was reused as a catalyst for p-nitrophenol hydrogenation. It achieved a turnover frequency (TOF) as high as 1032.6 h–1, significantly surpassing other catalysts reported in the literature. Overall, this novel adsorbent presented broad application prospects in the field of Pd recovery and reuse.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷氮化碳从溶液中回收钯并作为加氢催化再生
诸如钯等贵重材料的再循环一再被认为是环境和能源生产方面可持续未来的必要条件。然而,高效提取面临着重大挑战。在这项工作中,采用表面羟基调节策略,通过钴(Co)掺杂制备了具有高比表面积和分层孔隙度的缺陷氮化碳(CN)。表征证实了吸附剂的成功合成。结果表明,吸附过程的最佳pH为5.5,吸附动力学和吸附等温线分别符合拟二阶模型和Langmuir模型。最大吸附量可达529.1 mg·g-1。对Pd离子具有较高的亲和力,Kd值为4.1 × 104 ml·g-1。Pd吸附后,由于大量且均匀分散的Pd和Co颗粒的存在,进一步促进了吸附剂表面的协同催化作用,因此Co- cn -Pd被重复用作对硝基苯酚加氢的催化剂。其转换频率(TOF)高达1032.6 h-1,显著优于文献报道的其他催化剂。综上所述,这种新型吸附剂在钯回收再利用领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution Extracting metallic lithium and separating diffusion pump oil from lithium slag using a novel negative pressure distillation technology Additive promoted supported mixed amines on mesoporous silica for cyclic capture of carbon dioxide A conical array water evaporator with anti-biofouling, salt-rejecting and anti-polyelectrolyte effect for efficient solar energy-driven seawater desalination Permanganate pretreatment Improves the production of short chain fatty acids from waste activated sludge at pH10: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1