Enhanced activation of molecular oxygen for efficient chloroquine phosphate degradation with CuO@Co3O4/GF heterostructure: Promoting mechanisms of oxygen vacancy and interfacial electronic engineering
{"title":"Enhanced activation of molecular oxygen for efficient chloroquine phosphate degradation with CuO@Co3O4/GF heterostructure: Promoting mechanisms of oxygen vacancy and interfacial electronic engineering","authors":"Xuelin Shi, Zihao Yan, Tong Zhu, Zhirong Sun","doi":"10.1016/j.seppur.2025.131745","DOIUrl":null,"url":null,"abstract":"To address the issue of insufficient oxygen activation by electrode materials in electro-Fenton-like technology, we prepared a novel composite by one-step electrodeposition on graphite felt (GF) followed by calcination. The CuO@Co<sub>3</sub>O<sub>4</sub>/GF composite possessed oxygen vacancies and a heterostructure, which effectively modulated the catalyst’s charge distribution, facilitating oxygen adsorption and activation. The heterostructure enhanced the interfacial electron transfer between CuO and Co<sub>3</sub>O<sub>4</sub>, shifting the Co d-band center to higher energies and increasing its electron density, which reduced the oxygen adsorption energy barrier. The presence of oxygen vacancies reduced the kinetic barriers of the oxygen reduction reaction and provided additional active sites. CuO@Co<sub>3</sub>O<sub>4</sub>/GF was utilized for chloroquine phosphate degradation, achieving 100 % removal within 60 min, with a reaction rate 5.6 times higher than that of GF, and exhibited exceptional stability and applicability over a broad pH range. This study presents a facile approach for preparing composites with both oxygen vacancies and heterostructures, providing new insights into enhancing electrocatalytic performance.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"38 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131745","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of insufficient oxygen activation by electrode materials in electro-Fenton-like technology, we prepared a novel composite by one-step electrodeposition on graphite felt (GF) followed by calcination. The CuO@Co3O4/GF composite possessed oxygen vacancies and a heterostructure, which effectively modulated the catalyst’s charge distribution, facilitating oxygen adsorption and activation. The heterostructure enhanced the interfacial electron transfer between CuO and Co3O4, shifting the Co d-band center to higher energies and increasing its electron density, which reduced the oxygen adsorption energy barrier. The presence of oxygen vacancies reduced the kinetic barriers of the oxygen reduction reaction and provided additional active sites. CuO@Co3O4/GF was utilized for chloroquine phosphate degradation, achieving 100 % removal within 60 min, with a reaction rate 5.6 times higher than that of GF, and exhibited exceptional stability and applicability over a broad pH range. This study presents a facile approach for preparing composites with both oxygen vacancies and heterostructures, providing new insights into enhancing electrocatalytic performance.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.