Lukas Lauwereins, Quentin Van Thillo, Sofie Demeyer, Nicole Mentens, Sarah Provost, Kris Jacobs, Olga Gielen, Lien Boogaerts, Charles E. de Bock, Guillaume Andrieu, Vahid Asnafi, Jan Cools, Alexandra Veloso
{"title":"TLE4 is a repressor of the oncogenic activity of TLX3 in T-cell acute lymphoblastic leukemia","authors":"Lukas Lauwereins, Quentin Van Thillo, Sofie Demeyer, Nicole Mentens, Sarah Provost, Kris Jacobs, Olga Gielen, Lien Boogaerts, Charles E. de Bock, Guillaume Andrieu, Vahid Asnafi, Jan Cools, Alexandra Veloso","doi":"10.1038/s41375-025-02513-w","DOIUrl":null,"url":null,"abstract":"<p>T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease originating from the malignant transformation of T-cell progenitors, caused by the accumulation of genetic aberrations. One-fifth of T-ALL patients are characterized by ectopic expression of the homeobox transcription factor TLX3. However, the role of TLX3 in T-ALL remains elusive, partly due to the lack of suitable study models. Strikingly, this TLX3-positive subgroup has a high frequency of FLT3 mutations, predominantly FLT3-ITD, in pediatric cases. To investigate this, we generated ex vivo cultured pro-T cells driven by the co-expression of TLX3 and FLT3-ITD, which conferred IL7 independent growth. This model allowed us to confirm that TLX3 expression and FLT3 signaling cooperate to transform T-cells and induce an oncogenic context. Data from this cell model, combined with gene expression data from TLX3 positive T-ALL cases, revealed a strong downregulation of the transcriptional repressor TLE4. Furthermore, TLE4 showed to have a repressive effect on ex vivo TLX3 T-ALL cell growth, likely caused by a partial reversal of the TLX3 transcriptional profile. In conclusion, we developed a TLX3+FLT3-ITD pro-T cell model and used it to illustrate that TLX3 directly represses TLE4 expression, which is beneficial for the oncogenic function of TLX3.</p><figure></figure>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"28 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02513-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease originating from the malignant transformation of T-cell progenitors, caused by the accumulation of genetic aberrations. One-fifth of T-ALL patients are characterized by ectopic expression of the homeobox transcription factor TLX3. However, the role of TLX3 in T-ALL remains elusive, partly due to the lack of suitable study models. Strikingly, this TLX3-positive subgroup has a high frequency of FLT3 mutations, predominantly FLT3-ITD, in pediatric cases. To investigate this, we generated ex vivo cultured pro-T cells driven by the co-expression of TLX3 and FLT3-ITD, which conferred IL7 independent growth. This model allowed us to confirm that TLX3 expression and FLT3 signaling cooperate to transform T-cells and induce an oncogenic context. Data from this cell model, combined with gene expression data from TLX3 positive T-ALL cases, revealed a strong downregulation of the transcriptional repressor TLE4. Furthermore, TLE4 showed to have a repressive effect on ex vivo TLX3 T-ALL cell growth, likely caused by a partial reversal of the TLX3 transcriptional profile. In conclusion, we developed a TLX3+FLT3-ITD pro-T cell model and used it to illustrate that TLX3 directly represses TLE4 expression, which is beneficial for the oncogenic function of TLX3.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues