Anab Khanzada, Keshuang Yan, Wenhao Hu, Maguje Malko, Khalid Ali Khan, Yinguang Bao, Noureddine Elboughdiri, Yan Li
{"title":"Heat Stress Response Mechanisms and Resilience Strategies in Wheat","authors":"Anab Khanzada, Keshuang Yan, Wenhao Hu, Maguje Malko, Khalid Ali Khan, Yinguang Bao, Noureddine Elboughdiri, Yan Li","doi":"10.1111/jac.70023","DOIUrl":null,"url":null,"abstract":"Heat stress is a significant climatic hazard, intensified by rising global temperatures and frequent heatwaves, hindering wheat production. Heat stress damage wheat maturity resulting in morphophysiological changes, biochemical disturbances and a decline in genetic potential. Understanding the morpho–physio–biochemical responses of wheat to heat stress is essential for identifying tolerance mechanisms and developing effective strategies to protect wheat under changing climatic conditions. Plants have evolved various mechanisms to cope with heat stress, which include alterations in their morphological and growth responses, as well as adjustments in physiological and biochemical pathways, alongside modifications in enzymatic activities. Recent advancements in conventional, molecular breeding and transgenic methods have facilitated the development of heat‐tolerant wheat cultivars exhibiting adaptive responses to heat stress whilst maintaining quality and productivity. This review illuminated the morpho‐physiological, biochemical and molecular impacts of heat stress, the mechanisms of tolerance and adaptation strategies in wheat. Besides, we aimed to explore the integration of innovative use of heat priming and the application of smoke water treatment for stress mitigation, thus providing the basis for identifying and promoting effective management practices to mitigate the effects of heat stress in wheat.","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"33 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jac.70023","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stress is a significant climatic hazard, intensified by rising global temperatures and frequent heatwaves, hindering wheat production. Heat stress damage wheat maturity resulting in morphophysiological changes, biochemical disturbances and a decline in genetic potential. Understanding the morpho–physio–biochemical responses of wheat to heat stress is essential for identifying tolerance mechanisms and developing effective strategies to protect wheat under changing climatic conditions. Plants have evolved various mechanisms to cope with heat stress, which include alterations in their morphological and growth responses, as well as adjustments in physiological and biochemical pathways, alongside modifications in enzymatic activities. Recent advancements in conventional, molecular breeding and transgenic methods have facilitated the development of heat‐tolerant wheat cultivars exhibiting adaptive responses to heat stress whilst maintaining quality and productivity. This review illuminated the morpho‐physiological, biochemical and molecular impacts of heat stress, the mechanisms of tolerance and adaptation strategies in wheat. Besides, we aimed to explore the integration of innovative use of heat priming and the application of smoke water treatment for stress mitigation, thus providing the basis for identifying and promoting effective management practices to mitigate the effects of heat stress in wheat.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.