Tristate Switching of Terahertz Metasurfaces Enabled by Transferable VO2

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2025-01-22 DOI:10.1002/lpor.202401732
Fengjie Zhu, Kainan Yang, Jianhua Hao, Kebin Fan, He Ma, Jingbo Wu, Caihong Zhang, Xinping Zhang, Huabing Wang, Biaobing Jin, Jian Chen, Peiheng Wu
{"title":"Tristate Switching of Terahertz Metasurfaces Enabled by Transferable VO2","authors":"Fengjie Zhu, Kainan Yang, Jianhua Hao, Kebin Fan, He Ma, Jingbo Wu, Caihong Zhang, Xinping Zhang, Huabing Wang, Biaobing Jin, Jian Chen, Peiheng Wu","doi":"10.1002/lpor.202401732","DOIUrl":null,"url":null,"abstract":"Achieving dynamic switching among absorption (A), reflection (R), and transmission (T) states is not only essential for advancing the understanding of light-metasurface interactions but also holds significant potential for practical applications, such as selective electromagnetic shielding and smart windows. However, at terahertz and higher frequencies, implementing active elements in multilayer configurations presents challenges that are not as straightforward as those encountered in the microwave range. In this work, it is demonstrated that tristate ART tuning can be realized in a single-layer, free-standing metasurface by switching between a dual dipolar mode (electric dipole and magnetic dipole) and a single dipole mode (electric dipole). By transferring a flexible vanadium dioxide (VO<sub>2</sub>) thin film onto the free-standing dielectric Huygens’ metasurface, ART modulation is achieved, transitioning from a near-unity transmission state to a near-perfect absorption state, and finally to a high-reflection state with the reflection up to 0.65 during the insulator-to-metal transition induced by heating onto the phase-change material. The results may lead to new approaches in designing reconfigurable metasurfaces based on phase-change materials for wavefront control and electromagnetic shielding applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401732","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving dynamic switching among absorption (A), reflection (R), and transmission (T) states is not only essential for advancing the understanding of light-metasurface interactions but also holds significant potential for practical applications, such as selective electromagnetic shielding and smart windows. However, at terahertz and higher frequencies, implementing active elements in multilayer configurations presents challenges that are not as straightforward as those encountered in the microwave range. In this work, it is demonstrated that tristate ART tuning can be realized in a single-layer, free-standing metasurface by switching between a dual dipolar mode (electric dipole and magnetic dipole) and a single dipole mode (electric dipole). By transferring a flexible vanadium dioxide (VO2) thin film onto the free-standing dielectric Huygens’ metasurface, ART modulation is achieved, transitioning from a near-unity transmission state to a near-perfect absorption state, and finally to a high-reflection state with the reflection up to 0.65 during the insulator-to-metal transition induced by heating onto the phase-change material. The results may lead to new approaches in designing reconfigurable metasurfaces based on phase-change materials for wavefront control and electromagnetic shielding applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Topologically Integrated Photonic Biosensor Circuits Tristate Switching of Terahertz Metasurfaces Enabled by Transferable VO2 Multicolor Borogermanate Glass Films for High-Brightness Wide-Color-Gamut Laser-Driven Projection Display Excitation of Longitudinal Bound States in a Weyl Metamaterial cavity Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays (Laser Photonics Rev. 19(2)/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1