Unveiling the impact of photoinduced halide segregation on performance degradation in wide-bandgap perovskite solar cells

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-01-22 DOI:10.1039/d4ee05604c
Yuxiao Guo, Cong Zhang, Linqin Wang, Xingtian Yin, Bihui Sun, Changting Wei, Xin Luo, Shiyu Yang, Licheng Sun, Bo Xu
{"title":"Unveiling the impact of photoinduced halide segregation on performance degradation in wide-bandgap perovskite solar cells","authors":"Yuxiao Guo, Cong Zhang, Linqin Wang, Xingtian Yin, Bihui Sun, Changting Wei, Xin Luo, Shiyu Yang, Licheng Sun, Bo Xu","doi":"10.1039/d4ee05604c","DOIUrl":null,"url":null,"abstract":"Halide segregation under light exposure is a critical factor contributing to performance degradation of wide-bandgap perovskite solar cells (WBG PSCs). While this degradation has been traditionally linked to deficits in open-circuit voltage, our study identifies an initial sharp loss in short-circuit current density (JSC) as a significant inducement in the efficiency decline, particularly within the first ~240 seconds of light irradiation. By systematically varying the thickness of perovskite films, we observed two distinct migration modes of halide ions. Our results indicate that the rapid formation of I-rich terminal domains (~760 nm; ~1.63 eV) plays a pivotal role in the JSC loss, rather than the gradually red-shifted phases typically seen in perovskite films. We found that in thicker films (~420 nm), significant compressive strain in the crystal-stacked structure accelerates the formation of these I-rich domains. In contrast, thinner films (~190 nm) exhibit a structure of vertically oriented crystals, despite having higher defect concentration and more pronounced photoinduced halide segregation, which enhances carrier extraction and stabilizes JSC output. These findings highlight the importance of crystallization regulation in perovskite films as a strategy to mitigate JSC loss and improve the photostability of WBG PSCs. Our research provides new insights into the mechanisms behind halide segregation and its impact on device performance, offering practical solutions for enhancing the long-term performance of WBG PSCs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"6 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05604c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halide segregation under light exposure is a critical factor contributing to performance degradation of wide-bandgap perovskite solar cells (WBG PSCs). While this degradation has been traditionally linked to deficits in open-circuit voltage, our study identifies an initial sharp loss in short-circuit current density (JSC) as a significant inducement in the efficiency decline, particularly within the first ~240 seconds of light irradiation. By systematically varying the thickness of perovskite films, we observed two distinct migration modes of halide ions. Our results indicate that the rapid formation of I-rich terminal domains (~760 nm; ~1.63 eV) plays a pivotal role in the JSC loss, rather than the gradually red-shifted phases typically seen in perovskite films. We found that in thicker films (~420 nm), significant compressive strain in the crystal-stacked structure accelerates the formation of these I-rich domains. In contrast, thinner films (~190 nm) exhibit a structure of vertically oriented crystals, despite having higher defect concentration and more pronounced photoinduced halide segregation, which enhances carrier extraction and stabilizes JSC output. These findings highlight the importance of crystallization regulation in perovskite films as a strategy to mitigate JSC loss and improve the photostability of WBG PSCs. Our research provides new insights into the mechanisms behind halide segregation and its impact on device performance, offering practical solutions for enhancing the long-term performance of WBG PSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示光致卤化物偏析对宽禁带钙钛矿太阳能电池性能下降的影响
卤化物偏析是导致宽禁带钙钛矿太阳能电池(WBG PSCs)性能下降的关键因素。虽然这种退化通常与开路电压缺陷有关,但我们的研究发现,短路电流密度(JSC)的初始急剧损失是效率下降的重要诱因,特别是在光照射的前~240秒内。通过系统地改变钙钛矿薄膜的厚度,我们观察到卤化物离子的两种不同的迁移模式。我们的结果表明,富i末端结构域的快速形成(~760 nm;~1.63 eV)在JSC损失中起关键作用,而不是在钙钛矿薄膜中常见的逐渐红移相。我们发现,在较厚的薄膜(~420 nm)中,晶体堆叠结构中的显著压缩应变加速了这些富i畴的形成。相比之下,更薄的薄膜(~190 nm)具有更高的缺陷浓度和更明显的光致卤化物偏析,但表现出垂直取向的晶体结构,这增强了载流子的提取并稳定了JSC输出。这些发现强调了钙钛矿薄膜中结晶调节作为减轻JSC损失和提高WBG psc光稳定性的策略的重要性。我们的研究为卤化物分离背后的机制及其对器件性能的影响提供了新的见解,为提高WBG psc的长期性能提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Accelerating Interfacial Desolvation Kinetic by NaF-Rich Composite Sodium for High-Performance All-Climate Sodium-Metal Batteries A Microstructural Electrochemo-mechanical Model of High-nickel Composite Electrodes Towards Digital Twins to Bridge the Particle and Electrode-level Characterizations Fluorinated-oligomeric Ionic Liquids for High-performance Wide-temperature Solid Zinc Batteries CsPbI2Br Quantum Dots Integration for High Performance Organic Photovoltaics and Photodetectors Achieving Unprecedented Power-Output in 4-Terminal Mirror-Symmetrical Printable Carbon CsPbBr3 Solar Cells through Dual-Solvent Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1