Interactions between iron mineral and low-molecular-weight organic acids accelerated nitrogen conversion and release in lake sediments

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-01-21 DOI:10.1016/j.watres.2025.123174
Wan Yang , Yunfei Liang , Taige Li , Wenjing Li , Xiaolin Liao , Bing Wang , Xiaozhi Wang , Shengsen Wang
{"title":"Interactions between iron mineral and low-molecular-weight organic acids accelerated nitrogen conversion and release in lake sediments","authors":"Wan Yang ,&nbsp;Yunfei Liang ,&nbsp;Taige Li ,&nbsp;Wenjing Li ,&nbsp;Xiaolin Liao ,&nbsp;Bing Wang ,&nbsp;Xiaozhi Wang ,&nbsp;Shengsen Wang","doi":"10.1016/j.watres.2025.123174","DOIUrl":null,"url":null,"abstract":"<div><div>Endogenous nitrogen (N) release from lake sediments is one of main causes affecting water quality, which can be affected by the presence of iron (Fe) minerals and organic matter, especially low-molecular-weight organic acids (LMWOAs). Although these substances always coexist in sediments, their interaction effect on N fate is not yet clear. In this study, the role and mechanisms of the coexistence of iron mineral (ferrihydrite, Fh) and LMWOAs, i.e. citric acid (CA) and galacturonic acid (GA) on the release and transformation of N in lake sediments were systematically evaluated via microcosm cultivation for 45 d Results showed that the addition of Fh+LMWOAs significantly accelerated N mineralization and conversion in lake sediments, accompanied by increasing ferrous iron content and decreasing redox potential. Biotic pathways played more critical roles than abiotic oxidation pathways during this process, and Fh+LMWOAs strengthened cooperation among microbial species by forming complex topologies and higher positive correlations. Correspondingly, cellular functions, iron respiration, and N metabolism modules were increased. CA with high carboxyl content showed greater total nitrogen removal and metabolic abundance. The present findings facilitate understanding the synergies of iron minerals and organic matter on N fate and N biogeochemical cycling in lake sediments.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"275 ","pages":"Article 123174"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425000880","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Endogenous nitrogen (N) release from lake sediments is one of main causes affecting water quality, which can be affected by the presence of iron (Fe) minerals and organic matter, especially low-molecular-weight organic acids (LMWOAs). Although these substances always coexist in sediments, their interaction effect on N fate is not yet clear. In this study, the role and mechanisms of the coexistence of iron mineral (ferrihydrite, Fh) and LMWOAs, i.e. citric acid (CA) and galacturonic acid (GA) on the release and transformation of N in lake sediments were systematically evaluated via microcosm cultivation for 45 d Results showed that the addition of Fh+LMWOAs significantly accelerated N mineralization and conversion in lake sediments, accompanied by increasing ferrous iron content and decreasing redox potential. Biotic pathways played more critical roles than abiotic oxidation pathways during this process, and Fh+LMWOAs strengthened cooperation among microbial species by forming complex topologies and higher positive correlations. Correspondingly, cellular functions, iron respiration, and N metabolism modules were increased. CA with high carboxyl content showed greater total nitrogen removal and metabolic abundance. The present findings facilitate understanding the synergies of iron minerals and organic matter on N fate and N biogeochemical cycling in lake sediments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁矿物与低分子量有机酸的相互作用加速了湖泊沉积物中氮的转化和释放
湖泊沉积物中内源氮(N)释放是影响水质的主要原因之一,其主要受铁(Fe)矿物和有机物,特别是低分子量有机酸(LMWOAs)存在的影响。虽然这些物质在沉积物中一直共存,但它们对N命运的相互作用尚不清楚。本研究通过45 d的微环境培养,系统评价了铁水合铁(ferrihydrite, Fh)与柠檬酸(CA)、半乳醛酸(GA)共存对湖泊沉积物中N释放转化的作用和机制。结果表明,Fh+LMWOAs的加入显著加速了湖泊沉积物中N的矿化和转化,同时亚铁含量增加,氧化还原电位降低。在这一过程中,生物氧化途径比非生物氧化途径发挥更重要的作用,Fh+LMWOAs通过形成复杂的拓扑结构和更高的正相关性加强了微生物物种之间的合作。相应的,细胞功能、铁呼吸和氮代谢模块增加。羧基含量高的CA具有较高的总氮去除率和代谢丰度。本研究结果有助于理解铁矿物和有机质对湖泊沉积物中N命运和N生物地球化学循环的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Tolerant and Highly-Permeable Membrane Aerated Biofilm Reactor Enabled by Selective Armored Membrane Calcium phytate cross-linked polysaccharide hydrogels for selective removal of U(VI) from tailings wastewater Visible light photosensitised cross-flow microfiltration membrane reactors for managing microplastic-contaminated bio-effluents Powering Up Protein: How Hydrogel-Coated Electrodes Enhance Biohybrid Production Temporal trends of 46 pesticides and 8 transformation products in surface and drinking water in Québec, Canada (2021–2023): Potential higher health risks of transformation products than parent pesticides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1