An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-01-22 DOI:10.1002/adma.202409378
Sidi Zhang, Xinghui Wang, Xiaojing Chen, Duohuo Shu, Quankun Lin, Hanbing Zou, Jialin Dong, Bing Wang, Qianyun Tang, Huishan Li, Xiaoxiang Chen, Jun Pu, Bin Gu, Peifeng Liu
{"title":"An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy","authors":"Sidi Zhang, Xinghui Wang, Xiaojing Chen, Duohuo Shu, Quankun Lin, Hanbing Zou, Jialin Dong, Bing Wang, Qianyun Tang, Huishan Li, Xiaoxiang Chen, Jun Pu, Bin Gu, Peifeng Liu","doi":"10.1002/adma.202409378","DOIUrl":null,"url":null,"abstract":"Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs). Upon photothermal heating, this platform triggered oxygen release, thereby augmenting LOX-mediated lactate detection rates, and improving T cells infiltrating and cytokine expression. Moreover, under an oxygenated tumor microenvironment (TME), PFPNPs co-delivered with CpG ODNs effectively reprogrammed the immunosuppressive TME by repolarizing macrophages to an M1-like phenotype, promoting dendritic cells maturation, and increasing tumor-infiltrating T cells while decreasing the ratio of regulatory T cells (Tregs). Our study demonstrated that this controlled oxygen-releasing platform possessed adaptive drug-loading capabilities to meet varied immunotherapeutic demands in clinical settings.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"46 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409378","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs). Upon photothermal heating, this platform triggered oxygen release, thereby augmenting LOX-mediated lactate detection rates, and improving T cells infiltrating and cytokine expression. Moreover, under an oxygenated tumor microenvironment (TME), PFPNPs co-delivered with CpG ODNs effectively reprogrammed the immunosuppressive TME by repolarizing macrophages to an M1-like phenotype, promoting dendritic cells maturation, and increasing tumor-infiltrating T cells while decreasing the ratio of regulatory T cells (Tregs). Our study demonstrated that this controlled oxygen-releasing platform possessed adaptive drug-loading capabilities to meet varied immunotherapeutic demands in clinical settings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Supramolecular Organic Nanofiller: A New Reinforcement Strategy for Dynamic Covalent Polymer Networks Toward Upcycling of Carbon Fiber Composites Ultrafast Preparation of High-Entropy NASICON Cathode Enables Stabilized Multielectron Redox and Wide-Temperature (−50–60 °C) Workability in Sodium-Ion Batteries Stress Relaxation for Lead Iodide Nucleation in Efficient Perovskite Solar Cells 10 Years Development of Potassium-Ion Batteries An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1