Robust Power Spectral Density Estimation With a Truncated Linear Order Statistics Filter

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL IEEE Journal of Oceanic Engineering Pub Date : 2024-11-05 DOI:10.1109/JOE.2024.3463700
David Campos Anchieta;John R. Buck
{"title":"Robust Power Spectral Density Estimation With a Truncated Linear Order Statistics Filter","authors":"David Campos Anchieta;John R. Buck","doi":"10.1109/JOE.2024.3463700","DOIUrl":null,"url":null,"abstract":"The background power spectral density (PSD) of underwater acoustic signals carries important information about the environment. However, loud transients from human or natural sources are outliers that undermine the precision and accuracy of PSD estimators, such as Welch's overlapped segment averaging (WOSA). Estimators based on order statistics (OSs), such as Schwock and Abadi's Welch Percentile (SAWP), avoid the loud transient bias by employing a normalized chosen OS of the periodograms as an estimator of the background PSD. This article proposes the truncated linear order statistics filter (TLOSF), a hybrid approach between WOSA and SAWP that estimates the background PSD with a weighted average of the OS below a chosen percentile. The TLOSF weights minimize the estimator variance subject to a constraint that the estimator remain unbiased. Including all of the OS below a threshold rank in the weighted average allows TLOSF to achieve a lower variance than the SAWP estimator, but still retain the same robustness against loud outliers. Experiments with synthetic data and underwater recordings demonstrate the improved performance of the TLOSF estimator over the SAWP and Welch estimators in the presence of outliers.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 1","pages":"25-30"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742609/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The background power spectral density (PSD) of underwater acoustic signals carries important information about the environment. However, loud transients from human or natural sources are outliers that undermine the precision and accuracy of PSD estimators, such as Welch's overlapped segment averaging (WOSA). Estimators based on order statistics (OSs), such as Schwock and Abadi's Welch Percentile (SAWP), avoid the loud transient bias by employing a normalized chosen OS of the periodograms as an estimator of the background PSD. This article proposes the truncated linear order statistics filter (TLOSF), a hybrid approach between WOSA and SAWP that estimates the background PSD with a weighted average of the OS below a chosen percentile. The TLOSF weights minimize the estimator variance subject to a constraint that the estimator remain unbiased. Including all of the OS below a threshold rank in the weighted average allows TLOSF to achieve a lower variance than the SAWP estimator, but still retain the same robustness against loud outliers. Experiments with synthetic data and underwater recordings demonstrate the improved performance of the TLOSF estimator over the SAWP and Welch estimators in the presence of outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于截断线性阶统计量滤波器的鲁棒功率谱密度估计
水声信号的背景功率谱密度(PSD)承载着环境的重要信息。然而,来自人为或自然来源的响亮瞬变是异常值,会破坏PSD估计器的精度和准确性,例如韦尔奇重叠段平均(WOSA)。基于序统计量(OS)的估计器,如Schwock和Abadi的Welch百分比(SAWP),通过使用周期图的标准化选择OS作为背景PSD的估计器来避免严重的瞬态偏差。本文提出了截断线性顺序统计滤波器(TLOSF),这是一种介于WOSA和SAWP之间的混合方法,它使用低于所选百分比的OS加权平均值来估计背景PSD。在估计量保持无偏的约束下,TLOSF权重使估计量方差最小化。在加权平均值中包括所有低于阈值秩的操作系统,使TLOSF获得比SAWP估计器更低的方差,但仍然保持对大异常值的相同鲁棒性。合成数据和水下记录的实验表明,在存在异常值的情况下,TLOSF估计器比SAWP和Welch估计器的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
期刊最新文献
Table of Contents JOE Call for Papers - Special Issue on Maritime Informatics and Robotics: Advances from the IEEE Symposium on Maritime Informatics & Robotics JOE Call for Papers - Special Issue on the IEEE 2026 AUV Symposium Combined Texture Continuity and Correlation for Sidescan Sonar Heading Distortion Sea Surface Floating Small Target Detection Based on a Priori Feature Distribution and Multiscan Iteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1