Rui Cao;Enrique M. Padilla;Yuxin Fang;Adrian H. Callaghan
{"title":"Identification of the Free Surface for Unidirectional Nonbreaking Water Waves From Side-View Digital Images","authors":"Rui Cao;Enrique M. Padilla;Yuxin Fang;Adrian H. Callaghan","doi":"10.1109/JOE.2024.3467312","DOIUrl":null,"url":null,"abstract":"We present a semi-automated image processing method, the continuous maximum gradient (CMG) method, for identifying the air–water interface in side-view digital images of unidirectional water waves in a glass-walled laboratory wave flume. In a manner similar to Canny edge detection, CMG exploits gradients in pixel intensity to identify the free surface, but also enforces an additional streamline constraint. This latter step is necessary to exclude signals from other features, such as wave gauges and water droplets on the glass, which also exhibit large intensity gradients. To demonstrate the performance and accuracy of CMG, we first compare its detection results with independent wave gauge measurements. The maximum difference in total spectral variance was found to be approximately 4%, while quantitative error metrics from a regression analysis yielded an <inline-formula><tex-math>$R^{2}$</tex-math></inline-formula> value of 0.997 for the surface elevation time-series. We also compare the CMG detection results with imagery data from existing literature where excellent visual agreement is observed, confirming the broad applicability of the CMG method. The employment of CMG facilitates free surface measurements at a very high resolution (order of millimeters) which is essential for capturing the spatio-temporal wave-field evolution and obtaining instantaneous measurement of local wave shape.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 1","pages":"204-212"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752837/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a semi-automated image processing method, the continuous maximum gradient (CMG) method, for identifying the air–water interface in side-view digital images of unidirectional water waves in a glass-walled laboratory wave flume. In a manner similar to Canny edge detection, CMG exploits gradients in pixel intensity to identify the free surface, but also enforces an additional streamline constraint. This latter step is necessary to exclude signals from other features, such as wave gauges and water droplets on the glass, which also exhibit large intensity gradients. To demonstrate the performance and accuracy of CMG, we first compare its detection results with independent wave gauge measurements. The maximum difference in total spectral variance was found to be approximately 4%, while quantitative error metrics from a regression analysis yielded an $R^{2}$ value of 0.997 for the surface elevation time-series. We also compare the CMG detection results with imagery data from existing literature where excellent visual agreement is observed, confirming the broad applicability of the CMG method. The employment of CMG facilitates free surface measurements at a very high resolution (order of millimeters) which is essential for capturing the spatio-temporal wave-field evolution and obtaining instantaneous measurement of local wave shape.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.