Hans Wenzel;Eduard Kuhn;Ben King;Paul Crump;Mindaugas Radziunas
{"title":"Theory of the Linewidth–Power Product of Photonic–Crystal Surface–Emitting Lasers","authors":"Hans Wenzel;Eduard Kuhn;Ben King;Paul Crump;Mindaugas Radziunas","doi":"10.1109/JQE.2024.3524133","DOIUrl":null,"url":null,"abstract":"A general theory for the intrinsic (Lorentzian) linewidth of photonic-crystal surface-emitting lasers (PCSELs) is presented. The effect of spontaneous emission is modeled by a classical Langevin force entering the equation for the slowly varying waves. The solution of the coupled-wave equations, describing the propagation of four basic waves within the plane of the photonic crystal, is expanded in terms of the solutions of the associated spectral problem, i.e. the laser modes. Expressions are given for photon number, rate of spontaneous emission into the laser mode, Petermann factor and effective Henry factor entering the general formula for the linewidth. The theoretical framework is applied to the calculation of the linewidth-power product of air-hole and all-semiconductor PCSELs. For output powers in the Watt range, intrinsic linewidths in the kHz range are obtained in agreement with recent experimental results.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 1","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10818411/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A general theory for the intrinsic (Lorentzian) linewidth of photonic-crystal surface-emitting lasers (PCSELs) is presented. The effect of spontaneous emission is modeled by a classical Langevin force entering the equation for the slowly varying waves. The solution of the coupled-wave equations, describing the propagation of four basic waves within the plane of the photonic crystal, is expanded in terms of the solutions of the associated spectral problem, i.e. the laser modes. Expressions are given for photon number, rate of spontaneous emission into the laser mode, Petermann factor and effective Henry factor entering the general formula for the linewidth. The theoretical framework is applied to the calculation of the linewidth-power product of air-hole and all-semiconductor PCSELs. For output powers in the Watt range, intrinsic linewidths in the kHz range are obtained in agreement with recent experimental results.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.