Combining SEFDM Technique With IBFD Communication System in an ROF Link for Achieving Ultra-High Spectral Efficiency

IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Lightwave Technology Pub Date : 2024-10-22 DOI:10.1109/JLT.2024.3485124
Yu Chen;Yang Chen
{"title":"Combining SEFDM Technique With IBFD Communication System in an ROF Link for Achieving Ultra-High Spectral Efficiency","authors":"Yu Chen;Yang Chen","doi":"10.1109/JLT.2024.3485124","DOIUrl":null,"url":null,"abstract":"Oriented to the requirements of future high-frequency wireless communication systems, this paper proposes a method of combining spectrally efficient frequency-division multiplexing (SEFDM) technique with the in-band full-duplex (IBFD) communication system and applying it to microwave photonic transmission links to achieve ultra-high spectral efficiency. The microwave photonic link not only realizes the transmission of SEFDM signals received by the IBFD system but also realizes the analog self-interference cancellation (SIC) function. The digital SIC and SEFDM demodulation functions are seamlessly integrated following the analog SIC. Utilizing a cross-iterative algorithm, the adverse effects of the signal of interest (SOI) on the digital SIC of the received signal are mitigated, leading to a substantial improvement in both the SIC depth and demodulation performance of the SEFDM signal compared to the conventional least squares (LS) algorithm. An experiment has been conducted. The SOI and self-interference (SI) have symbol rates of 300 Msym/s and 600 Msym/s, respectively, and share a center frequency of 2 GHz and a bandwidth compression factor of 0.8. When the SI to SOI power ratio is 10.3 dB, the analog SIC depth is around 18.3 dB. The conventional LS algorithm achieves a digital SIC depth of 12.6 dB but the error vector magnitude (EVM) is 13.2%. In contrast, our proposed iterative method improves the SIC depth to 15.1 dB and reduces the EVM to 4.1%. The feasibility of the system is also verified by incorporating a 25.2-km fiber.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 3","pages":"1089-1097"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10729659/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Oriented to the requirements of future high-frequency wireless communication systems, this paper proposes a method of combining spectrally efficient frequency-division multiplexing (SEFDM) technique with the in-band full-duplex (IBFD) communication system and applying it to microwave photonic transmission links to achieve ultra-high spectral efficiency. The microwave photonic link not only realizes the transmission of SEFDM signals received by the IBFD system but also realizes the analog self-interference cancellation (SIC) function. The digital SIC and SEFDM demodulation functions are seamlessly integrated following the analog SIC. Utilizing a cross-iterative algorithm, the adverse effects of the signal of interest (SOI) on the digital SIC of the received signal are mitigated, leading to a substantial improvement in both the SIC depth and demodulation performance of the SEFDM signal compared to the conventional least squares (LS) algorithm. An experiment has been conducted. The SOI and self-interference (SI) have symbol rates of 300 Msym/s and 600 Msym/s, respectively, and share a center frequency of 2 GHz and a bandwidth compression factor of 0.8. When the SI to SOI power ratio is 10.3 dB, the analog SIC depth is around 18.3 dB. The conventional LS algorithm achieves a digital SIC depth of 12.6 dB but the error vector magnitude (EVM) is 13.2%. In contrast, our proposed iterative method improves the SIC depth to 15.1 dB and reduces the EVM to 4.1%. The feasibility of the system is also verified by incorporating a 25.2-km fiber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在ROF链路中结合SEFDM技术和IBFD通信系统实现超高频谱效率
针对未来高频无线通信系统的要求,提出了一种将频谱高效的频分复用(SEFDM)技术与带内全双工(IBFD)通信系统相结合,并应用于微波光子传输链路的方法,实现了超高频谱效率。微波光子链路不仅实现了IBFD系统接收到的SEFDM信号的传输,而且实现了模拟自干扰消除(SIC)功能。数字SIC和SEFDM解调功能在模拟SIC之后无缝集成。利用交叉迭代算法,减轻了感兴趣信号(SOI)对接收信号的数字SIC的不利影响,与传统的最小二乘(LS)算法相比,SEFDM信号的SIC深度和解调性能都有了实质性的改善。进行了一项实验。SOI和自干扰(SI)分别具有300 Msym/s和600 Msym/s的符号速率,共享2 GHz的中心频率和0.8的带宽压缩系数。当SI / SOI功率比为10.3 dB时,模拟SIC深度约为18.3 dB。传统LS算法的数字SIC深度为12.6 dB,但误差矢量幅度(EVM)为13.2%。相比之下,我们提出的迭代方法将SIC深度提高到15.1 dB,将EVM降低到4.1%。另外,通过连接25.2公里长的光纤,验证了该系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Lightwave Technology
Journal of Lightwave Technology 工程技术-工程:电子与电气
CiteScore
9.40
自引率
14.90%
发文量
936
审稿时长
3.9 months
期刊介绍: The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.
期刊最新文献
Table of Contents Front Cover Front Cover Front Cover Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1