Xiaojie Wang;Jiameng Li;Jun Wu;Lei Guo;Zhaolong Ning
{"title":"Energy Efficiency Optimization of IRS and UAV-Assisted Wireless Powered Edge Networks","authors":"Xiaojie Wang;Jiameng Li;Jun Wu;Lei Guo;Zhaolong Ning","doi":"10.1109/JSTSP.2024.3452501","DOIUrl":null,"url":null,"abstract":"With the surge in the number of Internet of Things (IoT) devices and latency-sensitive services such as smart cities and smart factories, Next Generation Multiple Access (NGMA) technologies (e.g., Intelligent Reflecting Surface (IRS) and millimeter wave), which can efficiently process a large number of user accesses and low-latency services, have gained much attention. Among them, due to the ability to optimize wireless channels and improve data and energy transmission efficiency, IRS has been applied to Unmanned Aerial Vehicle (UAV)-assisted wireless powered edge networks. However, scheduling multi-dimensional resources in multi-UAVs, multi-IRSs and multi-devices coexistence scenarios always leads to a large number of highly coupled variables and complicated optimization problems. To address the above challenges, we propose a multi-agent Deep Reinforcement Learning (DRL)-based distributed scheduling algorithm for IRS and UAV-assisted wireless powered edge networks to jointly optimize charging time, phase shift matrices of IRSs, association scheduling of UAVs and UAV trajectories. First, to satisfy UAV time constraints and device energy consumption constraints, we formulate an energy efficiency maximization problem and represent it as a corresponding Markov Decision Process (MDP). Then, we propose a lightweight scheduling algorithm based on multi-agent DRL with value function decomposition. Finally, experiments show that the proposed algorithm has significant advantages in terms of algorithm convergence and system energy efficiency.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 7","pages":"1297-1310"},"PeriodicalIF":8.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10660499/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the surge in the number of Internet of Things (IoT) devices and latency-sensitive services such as smart cities and smart factories, Next Generation Multiple Access (NGMA) technologies (e.g., Intelligent Reflecting Surface (IRS) and millimeter wave), which can efficiently process a large number of user accesses and low-latency services, have gained much attention. Among them, due to the ability to optimize wireless channels and improve data and energy transmission efficiency, IRS has been applied to Unmanned Aerial Vehicle (UAV)-assisted wireless powered edge networks. However, scheduling multi-dimensional resources in multi-UAVs, multi-IRSs and multi-devices coexistence scenarios always leads to a large number of highly coupled variables and complicated optimization problems. To address the above challenges, we propose a multi-agent Deep Reinforcement Learning (DRL)-based distributed scheduling algorithm for IRS and UAV-assisted wireless powered edge networks to jointly optimize charging time, phase shift matrices of IRSs, association scheduling of UAVs and UAV trajectories. First, to satisfy UAV time constraints and device energy consumption constraints, we formulate an energy efficiency maximization problem and represent it as a corresponding Markov Decision Process (MDP). Then, we propose a lightweight scheduling algorithm based on multi-agent DRL with value function decomposition. Finally, experiments show that the proposed algorithm has significant advantages in terms of algorithm convergence and system energy efficiency.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.