LG-Sleep: Local and Global Temporal Dependencies for Mice Sleep Scoring

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-12-26 DOI:10.1109/LSENS.2024.3523427
Shadi Sartipi;Mie Andersen;Natalie Hauglund;Celia Kjaerby;Verena Untiet;Maiken Nedergaard;Mujdat Cetin
{"title":"LG-Sleep: Local and Global Temporal Dependencies for Mice Sleep Scoring","authors":"Shadi Sartipi;Mie Andersen;Natalie Hauglund;Celia Kjaerby;Verena Untiet;Maiken Nedergaard;Mujdat Cetin","doi":"10.1109/LSENS.2024.3523427","DOIUrl":null,"url":null,"abstract":"Efficiently identifying sleep stages is crucial for unraveling the intricacies of sleep in both preclinical and clinical research. The labor-intensive nature of manual sleep scoring, demanding substantial expertise, has prompted a surge of interest in automated alternatives. Sleep studies in mice play a significant role in understanding sleep patterns and disorders and underscore the need for robust scoring methodologies. In response, this letter introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals. LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-REM sleep. The model leverages local and global temporal information by employing time-distributed convolutional neural networks to discern local temporal transitions in EEG data. Subsequently, features derived from the convolutional filters traverse long short-term memory blocks, capturing global transitions over extended periods. Crucially, the model is optimized in an autoencoder–decoder fashion, facilitating generalization across distinct subjects and adapting to limited training samples. Experimental findings demonstrate superior performance of LG-Sleep compared to conventional deep neural networks. Moreover, the model exhibits good performance across different sleep stages even when tasked with scoring based on limited training samples.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816610/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently identifying sleep stages is crucial for unraveling the intricacies of sleep in both preclinical and clinical research. The labor-intensive nature of manual sleep scoring, demanding substantial expertise, has prompted a surge of interest in automated alternatives. Sleep studies in mice play a significant role in understanding sleep patterns and disorders and underscore the need for robust scoring methodologies. In response, this letter introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals. LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-REM sleep. The model leverages local and global temporal information by employing time-distributed convolutional neural networks to discern local temporal transitions in EEG data. Subsequently, features derived from the convolutional filters traverse long short-term memory blocks, capturing global transitions over extended periods. Crucially, the model is optimized in an autoencoder–decoder fashion, facilitating generalization across distinct subjects and adapting to limited training samples. Experimental findings demonstrate superior performance of LG-Sleep compared to conventional deep neural networks. Moreover, the model exhibits good performance across different sleep stages even when tasked with scoring based on limited training samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LG-Sleep:小鼠睡眠评分的局部和全局时间依赖性
在临床前和临床研究中,有效地识别睡眠阶段对于解开睡眠的复杂性至关重要。手动睡眠评分的劳动密集型,需要大量的专业知识,这促使人们对自动化替代方案产生了浓厚的兴趣。小鼠睡眠研究在理解睡眠模式和障碍方面发挥着重要作用,并强调了对可靠评分方法的需求。作为回应,这封信介绍了LG-Sleep,这是一种新颖的独立于受试者的深度神经网络架构,旨在通过脑电图(EEG)信号对小鼠睡眠进行评分。LG-Sleep提取EEG信号中的局部和全局时间转换,将睡眠数据分为三个阶段:清醒、快速眼动(REM)睡眠和非快速眼动睡眠。该模型利用局部和全局时间信息,利用时间分布卷积神经网络来识别EEG数据中的局部时间转移。随后,来自卷积滤波器的特征遍历长短期记忆块,捕获长时间内的全局转换。至关重要的是,该模型以自动编码器-解码器的方式进行了优化,促进了不同主题的泛化,并适应有限的训练样本。实验结果表明,与传统的深度神经网络相比,LG-Sleep具有优越的性能。此外,该模型在不同的睡眠阶段表现良好,即使是基于有限的训练样本进行评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1