Tomographic Inversion of Urban Area via Tikhonov Regularization and Bayesian Information Criterion

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2025-01-02 DOI:10.1109/LSENS.2024.3525127
Hui Bi;Weihao Xu;Shuang Jin;Jingjing Zhang
{"title":"Tomographic Inversion of Urban Area via Tikhonov Regularization and Bayesian Information Criterion","authors":"Hui Bi;Weihao Xu;Shuang Jin;Jingjing Zhang","doi":"10.1109/LSENS.2024.3525127","DOIUrl":null,"url":null,"abstract":"As an extension of synthetic aperture radar (SAR), SAR tomography (TomoSAR) technology can reduce the overlapping in 2-D SAR image and separate multiscatterer along the elevation direction, thereby achieving the high-precision 3-D reconstruction of the surveillance area. However, in practical spaceborne TomoSAR application, the quality of 3-D imaging is restricted by the limited number of baselines and their uneven distribution. Therefore, it is necessary to find advanced signal processing technology to achieve the target 3-D recovery when the amount of data is limited. In this letter, a novel Tikhonov regularization and Bayesian information criterion (BIC)-based nonparametric iterative adaptive approach (IAA), named RIAA-BIC, is proposed and introduced to the spaceborne data processing. Compared with conventional spectral estimation, compressed sensing-based, and IAA algorithms, the proposed method incorporates the Tikhonov regularization term to avoid the problem of solving nonlinear ill-posed equation in the elevation inversion. Furthermore, the BIC model selection tool can eliminate the false or weak scatterers, thereby improving the 3-D reconstruction accuracy of the surveillance area. Experimental results based on TerraSAR-X dataset verify the proposed method.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As an extension of synthetic aperture radar (SAR), SAR tomography (TomoSAR) technology can reduce the overlapping in 2-D SAR image and separate multiscatterer along the elevation direction, thereby achieving the high-precision 3-D reconstruction of the surveillance area. However, in practical spaceborne TomoSAR application, the quality of 3-D imaging is restricted by the limited number of baselines and their uneven distribution. Therefore, it is necessary to find advanced signal processing technology to achieve the target 3-D recovery when the amount of data is limited. In this letter, a novel Tikhonov regularization and Bayesian information criterion (BIC)-based nonparametric iterative adaptive approach (IAA), named RIAA-BIC, is proposed and introduced to the spaceborne data processing. Compared with conventional spectral estimation, compressed sensing-based, and IAA algorithms, the proposed method incorporates the Tikhonov regularization term to avoid the problem of solving nonlinear ill-posed equation in the elevation inversion. Furthermore, the BIC model selection tool can eliminate the false or weak scatterers, thereby improving the 3-D reconstruction accuracy of the surveillance area. Experimental results based on TerraSAR-X dataset verify the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吉洪诺夫正则化和贝叶斯信息准则的城市区域层析反演
作为合成孔径雷达(SAR)的延伸,SAR层析成像(TomoSAR)技术可以减少二维SAR图像中的重叠,并沿高程方向分离多散射体,从而实现监视区域的高精度三维重建。然而,在实际的星载TomoSAR应用中,三维成像质量受到基线数量有限和分布不均匀的制约。因此,在数据量有限的情况下,需要寻找先进的信号处理技术来实现目标的三维恢复。本文提出了一种基于吉洪诺夫正则化和贝叶斯信息准则(BIC)的非参数迭代自适应方法(IAA),并将其引入到星载数据处理中。与传统的光谱估计、基于压缩感知和IAA算法相比,该方法引入了Tikhonov正则化项,避免了高程反演中求解非线性不适定方程的问题。此外,BIC模型选择工具可以消除虚假或弱散射体,从而提高监视区域的三维重建精度。基于TerraSAR-X数据集的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1