Huarun Chen;Yijun Liu;Wujian Ye;Jialiang Ye;Yuehai Chen;Shaozhen Chen;Chao Han
{"title":"Research on Hardware Acceleration of Traffic Sign Recognition Based on Spiking Neural Network and FPGA Platform","authors":"Huarun Chen;Yijun Liu;Wujian Ye;Jialiang Ye;Yuehai Chen;Shaozhen Chen;Chao Han","doi":"10.1109/TVLSI.2024.3470834","DOIUrl":null,"url":null,"abstract":"Most of the existing methods for traffic sign recognition exploited deep learning technology such as convolutional neural networks (CNNs) to achieve a breakthrough in detection accuracy; however, due to the large number of CNN’s parameters, there are problems in practical applications such as high power consumption, large calculation, and slow speed. Compared with CNN, a spiking neural network (SNN) can effectively simulate the information processing mechanism of biological brain, with stronger parallel processing capability, better sparsity, and real-time performance. Thus, we design and realize a novel traffic sign recognition system [called SNN on FPGA-traffic sign recognition system (SFPGA-TSRS)] based on spiking CNN (SCNN) and FPGA platform. Specifically, to improve the recognition accuracy, a traffic sign recognition model spatial attention SCNN (SA-SCNN) is proposed by combining LIF/IF neurons based SCNN with SA mechanism; and to accelerate the model inference, a neuron module is implemented with high performance, and an input coding module is designed as the input layer of the recognition model. The experiments show that compared with existing systems, the proposed SFPGA-TSRS can efficiently support the deployment of SCNN models, with a higher recognition accuracy of 99.22%, a faster frame rate of 66.38 frames per second (FPS), and lower power consumption of 1.423 W on the GTSRB dataset.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 2","pages":"499-511"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715726/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Most of the existing methods for traffic sign recognition exploited deep learning technology such as convolutional neural networks (CNNs) to achieve a breakthrough in detection accuracy; however, due to the large number of CNN’s parameters, there are problems in practical applications such as high power consumption, large calculation, and slow speed. Compared with CNN, a spiking neural network (SNN) can effectively simulate the information processing mechanism of biological brain, with stronger parallel processing capability, better sparsity, and real-time performance. Thus, we design and realize a novel traffic sign recognition system [called SNN on FPGA-traffic sign recognition system (SFPGA-TSRS)] based on spiking CNN (SCNN) and FPGA platform. Specifically, to improve the recognition accuracy, a traffic sign recognition model spatial attention SCNN (SA-SCNN) is proposed by combining LIF/IF neurons based SCNN with SA mechanism; and to accelerate the model inference, a neuron module is implemented with high performance, and an input coding module is designed as the input layer of the recognition model. The experiments show that compared with existing systems, the proposed SFPGA-TSRS can efficiently support the deployment of SCNN models, with a higher recognition accuracy of 99.22%, a faster frame rate of 66.38 frames per second (FPS), and lower power consumption of 1.423 W on the GTSRB dataset.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.