PRA-Det: Anchor-Free Oriented Object Detection With Polar Radius Representation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-24 DOI:10.1109/TMM.2024.3521683
Min Dang;Gang Liu;Hao Li;Di Wang;Rong Pan;Quan Wang
{"title":"PRA-Det: Anchor-Free Oriented Object Detection With Polar Radius Representation","authors":"Min Dang;Gang Liu;Hao Li;Di Wang;Rong Pan;Quan Wang","doi":"10.1109/TMM.2024.3521683","DOIUrl":null,"url":null,"abstract":"Oriented object detection typically adds an additional rotation angle to the regressed horizontal bounding box (HBB) for representing the oriented bounding box (OBB). However, existing oriented object detectors based on regression angles face inconsistency between metric and loss, boundary discontinuity or square-like problems. To solve the above problems, we propose an anchor-free oriented object detector named PRA-Det, which assigns the center region of the object to regress OBBs represented by the polar radius vectors. Specifically, the proposed PRA-Det introduces a diamond-shaped positive region of category-wise attention factor to assign positive sample points to regress polar radius vectors. PRA-Det regresses the polar radius vector of the edges from the assigned sample points as the regression target and suppresses the predicted low-quality polar radius vectors through the category-wise attention factor. The OBBs defined for different protocols are uniformly encoded by the polar radius encoding module into regression targets represented by polar radius vectors. Therefore, the regression target represented by the polar radius vector does not have angle parameters during training, thus solving the angle-sensitive boundary discontinuity and square-like problems. To optimize the predicted polar radius vector, we design a spatial geometry loss to improve the detection accuracy. Furthermore, in the inference stage, the center offset score of the polar radius vector is combined with the classification score as the confidence to alleviate the inconsistency between classification and regression. The extensive experiments on public benchmarks demonstrate that the PRA-Det is highly competitive with state-of-the-art oriented object detectors and outperforms other comparison methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"145-157"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814675/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Oriented object detection typically adds an additional rotation angle to the regressed horizontal bounding box (HBB) for representing the oriented bounding box (OBB). However, existing oriented object detectors based on regression angles face inconsistency between metric and loss, boundary discontinuity or square-like problems. To solve the above problems, we propose an anchor-free oriented object detector named PRA-Det, which assigns the center region of the object to regress OBBs represented by the polar radius vectors. Specifically, the proposed PRA-Det introduces a diamond-shaped positive region of category-wise attention factor to assign positive sample points to regress polar radius vectors. PRA-Det regresses the polar radius vector of the edges from the assigned sample points as the regression target and suppresses the predicted low-quality polar radius vectors through the category-wise attention factor. The OBBs defined for different protocols are uniformly encoded by the polar radius encoding module into regression targets represented by polar radius vectors. Therefore, the regression target represented by the polar radius vector does not have angle parameters during training, thus solving the angle-sensitive boundary discontinuity and square-like problems. To optimize the predicted polar radius vector, we design a spatial geometry loss to improve the detection accuracy. Furthermore, in the inference stage, the center offset score of the polar radius vector is combined with the classification score as the confidence to alleviate the inconsistency between classification and regression. The extensive experiments on public benchmarks demonstrate that the PRA-Det is highly competitive with state-of-the-art oriented object detectors and outperforms other comparison methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PRA-Det:基于极半径表示的无锚定向目标检测
定向对象检测通常为回归的水平边界框(HBB)添加一个额外的旋转角度,以表示定向边界框(OBB)。然而,现有的基于回归角的定向目标检测器存在度量与损失不一致、边界不连续或类平方问题。为了解决上述问题,我们提出了一种无锚定向目标检测器PRA-Det,该检测器分配目标的中心区域回归以极半径向量表示的obb。具体而言,本文提出的PRA-Det引入了一个菱形的类别关注因子正区域,将正样本点分配给回归的极半径向量。PRA-Det从指定的样本点回归边缘的极半径向量作为回归目标,并通过分类注意因子抑制预测的低质量极半径向量。针对不同协议定义的obb由极半径编码模块统一编码成由极半径向量表示的回归目标。因此,以极半径向量表示的回归目标在训练过程中没有角度参数,从而解决了角度敏感的边界不连续和类方问题。为了优化预测的极半径向量,我们设计了空间几何损失来提高检测精度。进一步,在推理阶段,将极半径向量的中心偏移分数与分类分数相结合作为置信度,缓解了分类与回归不一致的问题。在公共基准测试上的大量实验表明,PRA-Det与最先进的面向目标检测器具有很强的竞争力,并且优于其他比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1