Progressive Region-to-Boundary Exploration Network for Camouflaged Object Detection

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-24 DOI:10.1109/TMM.2024.3521761
Guanghui Yue;Shangjie Wu;Tianwei Zhou;Gang Li;Jie Du;Yu Luo;Qiuping Jiang
{"title":"Progressive Region-to-Boundary Exploration Network for Camouflaged Object Detection","authors":"Guanghui Yue;Shangjie Wu;Tianwei Zhou;Gang Li;Jie Du;Yu Luo;Qiuping Jiang","doi":"10.1109/TMM.2024.3521761","DOIUrl":null,"url":null,"abstract":"Camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, existing COD methods usually produce inaccurate predictions, especially around the boundary areas, when coping with complex scenes. This paper proposes a Progressive Region-to-Boundary Exploration Network (PRBE-Net) to accurately detect camouflaged objects. PRBE-Net follows an encoder-decoder framework and includes three key modules. Specifically, firstly, both high-level and low-level features of the encoder are integrated by a region and boundary exploration module to explore their complementary information for extracting the object's coarse region and fine boundary cues simultaneously. Secondly, taking the region cues as the guidance information, a Region Enhancement (RE) module is used to adaptively localize and enhance the region information at each layer of the encoder. Subsequently, considering that camouflaged objects usually have blurry boundaries, a Boundary Refinement (BR) decoder is used after the RE module to better detect the boundary areas with the assistance of boundary cues. Through top-down deep supervision, PRBE-Net can progressively refine the prediction. Extensive experiments on four datasets indicate that our PRBE-Net achieves superior results over 21 state-of-the-art COD methods. Additionally, it also shows good results on polyp segmentation, a COD-related task in the medical field.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"236-248"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814101/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, existing COD methods usually produce inaccurate predictions, especially around the boundary areas, when coping with complex scenes. This paper proposes a Progressive Region-to-Boundary Exploration Network (PRBE-Net) to accurately detect camouflaged objects. PRBE-Net follows an encoder-decoder framework and includes three key modules. Specifically, firstly, both high-level and low-level features of the encoder are integrated by a region and boundary exploration module to explore their complementary information for extracting the object's coarse region and fine boundary cues simultaneously. Secondly, taking the region cues as the guidance information, a Region Enhancement (RE) module is used to adaptively localize and enhance the region information at each layer of the encoder. Subsequently, considering that camouflaged objects usually have blurry boundaries, a Boundary Refinement (BR) decoder is used after the RE module to better detect the boundary areas with the assistance of boundary cues. Through top-down deep supervision, PRBE-Net can progressively refine the prediction. Extensive experiments on four datasets indicate that our PRBE-Net achieves superior results over 21 state-of-the-art COD methods. Additionally, it also shows good results on polyp segmentation, a COD-related task in the medical field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区域到边界渐进式伪装目标探测网络
伪装对象检测(COD)的目的是分割目标对象具有相似的颜色,纹理,或形状的背景环境。由于区分高度相似模式的能力有限,现有COD方法在处理复杂场景时通常会产生不准确的预测,特别是在边界区域附近。本文提出了一种精确检测伪装目标的渐进式区域到边界探测网络(PRBE-Net)。PRBE-Net遵循编码器-解码器框架,包括三个关键模块。具体而言,首先,通过区域和边界探索模块将编码器的高级和低级特征集成起来,探索它们的互补信息,同时提取目标的粗区域和精细边界线索;其次,以区域线索作为引导信息,利用区域增强模块对编码器各层的区域信息进行自适应定位和增强;随后,考虑到被伪装物体的边界通常比较模糊,在正则模块之后加入边界细化(border Refinement, BR)解码器,借助边界线索更好地检测到边界区域。通过自上而下的深度监督,PRBE-Net可以逐步完善预测。在四个数据集上进行的大量实验表明,我们的PRBE-Net比21种最先进的COD方法取得了更好的结果。此外,在医学领域与cod相关的息肉分割任务中也显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1