{"title":"Dynamic Strategy Prompt Reasoning for Emotional Support Conversation","authors":"Yiting Liu;Liang Li;Yunbin Tu;Beichen Zhang;Zheng-Jun Zha;Qingming Huang","doi":"10.1109/TMM.2024.3521669","DOIUrl":null,"url":null,"abstract":"An emotional support conversation (ESC) system aims to reduce users' emotional distress by engaging in conversation using various reply strategies as guidance. To develop instructive reply strategies for an ESC system, it is essential to consider the dynamic transitions of users' emotional states through the conversational turns. However, existing methods for strategy-guided ESC systems struggle to capture these transitions as they overlook the inference of fine-grained user intentions. This oversight poses a significant obstacle, impeding the model's ability to derive pertinent strategy information and, consequently, hindering its capacity to generate emotionally supportive responses. To tackle this limitation, we propose a novel dynamic strategy prompt reasoning model (DSR), which leverages sparse context relation deduction to acquire adaptive representation of reply strategies as prompts for guiding the response generation process. Specifically, we first perform turn-level commonsense reasoning with different approaches to extract auxiliary knowledge, which enhances the comprehension of user intention. Then we design a context relation deduction module to dynamically integrate interdependent dialogue information, capturing granular user intentions and generating effective strategy prompts. Finally, we utilize the strategy prompts to guide the generation of more relevant and supportive responses. DSR model is validated through extensive experiments conducted on a benchmark dataset, demonstrating its superior performance compared to the latest competitive methods in the field.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"108-119"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812840/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
An emotional support conversation (ESC) system aims to reduce users' emotional distress by engaging in conversation using various reply strategies as guidance. To develop instructive reply strategies for an ESC system, it is essential to consider the dynamic transitions of users' emotional states through the conversational turns. However, existing methods for strategy-guided ESC systems struggle to capture these transitions as they overlook the inference of fine-grained user intentions. This oversight poses a significant obstacle, impeding the model's ability to derive pertinent strategy information and, consequently, hindering its capacity to generate emotionally supportive responses. To tackle this limitation, we propose a novel dynamic strategy prompt reasoning model (DSR), which leverages sparse context relation deduction to acquire adaptive representation of reply strategies as prompts for guiding the response generation process. Specifically, we first perform turn-level commonsense reasoning with different approaches to extract auxiliary knowledge, which enhances the comprehension of user intention. Then we design a context relation deduction module to dynamically integrate interdependent dialogue information, capturing granular user intentions and generating effective strategy prompts. Finally, we utilize the strategy prompts to guide the generation of more relevant and supportive responses. DSR model is validated through extensive experiments conducted on a benchmark dataset, demonstrating its superior performance compared to the latest competitive methods in the field.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.