WHANet:Wavelet-Based Hybrid Asymmetric Network for Spectral Super-Resolution From RGB Inputs

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-23 DOI:10.1109/TMM.2024.3521713
Nan Wang;Shaohui Mei;Yi Wang;Yifan Zhang;Duo Zhan
{"title":"WHANet:Wavelet-Based Hybrid Asymmetric Network for Spectral Super-Resolution From RGB Inputs","authors":"Nan Wang;Shaohui Mei;Yi Wang;Yifan Zhang;Duo Zhan","doi":"10.1109/TMM.2024.3521713","DOIUrl":null,"url":null,"abstract":"The reconstruction from three to dozens of spectral bands, known as spectral super resolution (SSR) has achieved remarkable progress with the continuous development of deep learning. However, the reconstructed hyperspectral images (HSIs) still suffer from the spatial degeneration due to the insufficient retention of high-frequency (HF) information during the SSR process. To remedy this issue, a novel Wavelet-based Hybrid Asymmetric Network (WHANet) is proposed to establish a RGB-to-HSI translation in wavelet domain, thus reserving and emphasizing the HF features in hyperspectral space. Basically, the backbone is designed in a hybrid asymmetric structure that learns the exact representations of decomposed wavelet coefficients in hyperspectral domain in a parallel way. Innovatively, a CNN-based HF reconstruction module (HFRM) and a transformer-based low frequency (LF) reconstruction module (LFRM) are delicately devised to perform the SSR process individually, which are able to process the discriminative wavelet coefficients contrapuntally. Furthermore, a hybrid loss function incorporated with the Fast Fourier loss (FFL) is proposed to directly regularize and emphasis the missing HF components. Eventually, experimental results over three benchmark datasets and one remote sensing dataset demonstrate that our WHANet is able to reach the state-of-the-art performance quantitatively and qualitatively.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"414-428"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812768/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The reconstruction from three to dozens of spectral bands, known as spectral super resolution (SSR) has achieved remarkable progress with the continuous development of deep learning. However, the reconstructed hyperspectral images (HSIs) still suffer from the spatial degeneration due to the insufficient retention of high-frequency (HF) information during the SSR process. To remedy this issue, a novel Wavelet-based Hybrid Asymmetric Network (WHANet) is proposed to establish a RGB-to-HSI translation in wavelet domain, thus reserving and emphasizing the HF features in hyperspectral space. Basically, the backbone is designed in a hybrid asymmetric structure that learns the exact representations of decomposed wavelet coefficients in hyperspectral domain in a parallel way. Innovatively, a CNN-based HF reconstruction module (HFRM) and a transformer-based low frequency (LF) reconstruction module (LFRM) are delicately devised to perform the SSR process individually, which are able to process the discriminative wavelet coefficients contrapuntally. Furthermore, a hybrid loss function incorporated with the Fast Fourier loss (FFL) is proposed to directly regularize and emphasis the missing HF components. Eventually, experimental results over three benchmark datasets and one remote sensing dataset demonstrate that our WHANet is able to reach the state-of-the-art performance quantitatively and qualitatively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WHANet:基于小波的RGB输入光谱超分辨率混合不对称网络
随着深度学习技术的不断发展,从3到几十个光谱波段的重建,即光谱超分辨率(SSR)技术已经取得了显著的进展。然而,由于SSR过程中高频信息的保留不足,重构的高光谱图像仍然存在空间退化的问题。为了解决这一问题,提出了一种新的基于小波的混合不对称网络(WHANet),在小波域建立rgb到hsi的转换,从而保留和强调高光谱空间中的高频特征。基本上,主干被设计成一种混合不对称结构,以并行的方式学习分解后的小波系数在高光谱域的精确表示。创新地,设计了基于cnn的高频重构模块(HFRM)和基于变压器的低频重构模块(LFRM)分别执行SSR过程,能够对位处理判别小波系数。此外,提出了一种结合快速傅立叶损失(FFL)的混合损失函数来直接正则化和强调缺失的高频分量。最后,在三个基准数据集和一个遥感数据集上的实验结果表明,我们的WHANet能够在定量和定性上达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1