Cytocompatible, disintegrable, low-voltage operation n-type organic thin film transistors†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-12-23 DOI:10.1039/D4MA01148A
Mohsin Ali, Bahar Ronnasi, May Ourabi, Joon Hyung Park, Jean-Philippe St-Pierre, Chang-Hyun Kim and Benoît H. Lessard
{"title":"Cytocompatible, disintegrable, low-voltage operation n-type organic thin film transistors†","authors":"Mohsin Ali, Bahar Ronnasi, May Ourabi, Joon Hyung Park, Jean-Philippe St-Pierre, Chang-Hyun Kim and Benoît H. Lessard","doi":"10.1039/D4MA01148A","DOIUrl":null,"url":null,"abstract":"<p >The constant demands for the better performance of consumer electronics have led to shorter usage lifespans, resulting in a significant increase in electronic waste (e-waste). Developing electronics that can be easily broken down and recycled is a promising strategy to tackle this growing e-waste challenge. Herein, we report a biocompatible and degradable organic thin film transistor (OTFT) utilizing a biocompatible semiconductor with a biodegradable dielectric and substrate. We present the first OTFT based on bispentafluorophenoxy silicon phthalocyanine (F<small><sub>10</sub></small>-SiPc) integrated with a polyvinyl alcohol (PVA) and poly(caprolactone) (PCL) bilayer as the dielectric, leading to a drop in threshold voltage (<em>V</em><small><sub>T</sub></small>) from 12.7 V to −0.97 V, <em>versus</em> using SiO<small><sub>2</sub></small> while maintaining similar mobility values. We demonstrate the importance of the annealing temperature on PLA substrate roughness and gate electrode surface chemistry for the fabrication of working OTFT devices. We then demonstrate that the bendable OTFTs could easily be dissolved in phosphate buffer saline (PBS) solution at room temperature in less than a month, which is a crucial aspect for ensuring eco-sustainability in electronic devices. Finally, incubation of the degradation products with fibroblastic cells did not affect cell viability, suggesting that they are non-cytotoxic. These cytocompatible disintegrable OTFTs with low operating voltages will find applications in bioresorbable electronics and constitute a step towards minimizing e-waste.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 2","pages":" 557-568"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01148a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01148a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The constant demands for the better performance of consumer electronics have led to shorter usage lifespans, resulting in a significant increase in electronic waste (e-waste). Developing electronics that can be easily broken down and recycled is a promising strategy to tackle this growing e-waste challenge. Herein, we report a biocompatible and degradable organic thin film transistor (OTFT) utilizing a biocompatible semiconductor with a biodegradable dielectric and substrate. We present the first OTFT based on bispentafluorophenoxy silicon phthalocyanine (F10-SiPc) integrated with a polyvinyl alcohol (PVA) and poly(caprolactone) (PCL) bilayer as the dielectric, leading to a drop in threshold voltage (VT) from 12.7 V to −0.97 V, versus using SiO2 while maintaining similar mobility values. We demonstrate the importance of the annealing temperature on PLA substrate roughness and gate electrode surface chemistry for the fabrication of working OTFT devices. We then demonstrate that the bendable OTFTs could easily be dissolved in phosphate buffer saline (PBS) solution at room temperature in less than a month, which is a crucial aspect for ensuring eco-sustainability in electronic devices. Finally, incubation of the degradation products with fibroblastic cells did not affect cell viability, suggesting that they are non-cytotoxic. These cytocompatible disintegrable OTFTs with low operating voltages will find applications in bioresorbable electronics and constitute a step towards minimizing e-waste.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞兼容,可分解,低电压操作n型有机薄膜晶体管†
对消费电子产品更好性能的不断要求导致使用寿命缩短,导致电子废物(电子废物)显著增加。开发易于分解和回收的电子产品是解决这一日益增长的电子垃圾挑战的一个有希望的策略。在此,我们报告了一种生物相容性和可降解的有机薄膜晶体管(OTFT),该晶体管利用具有可生物降解电介质和衬底的生物相容性半导体。我们提出了第一个基于双五氟苯氧基酞菁硅(F10-SiPc)与聚乙烯醇(PVA)和聚己内酯(PCL)双分子层作为介质集成的OTFT,与使用SiO2相比,在保持相似迁移率值的情况下,导致阈值电压(VT)从12.7 V降至- 0.97 V。我们证明了退火温度对PLA衬底粗糙度和栅极表面化学的重要性。然后,我们证明了可弯曲的otft可以在不到一个月的时间内在室温下很容易地溶解在磷酸盐缓冲盐水(PBS)溶液中,这是确保电子设备生态可持续性的关键方面。最后,降解产物与成纤维细胞孵育不影响细胞活力,表明它们无细胞毒性。这些具有低工作电压的细胞兼容可分解otft将在生物可吸收电子产品中得到应用,并构成了减少电子废物的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Back cover Deciphering the electrochemical kinetics of sulfur vacancy-assisted nitrogen-doped NiCo2S4 combined with sulfur-doped g-C3N4 towards supercapacitor applications† Synthesis and preclinical evaluation of novel l-cystine-based polyamide nanocapsules loaded with a fixed-dose combination of thymoquinone and doxorubicin for targeted pulmonary anticancer drug delivery Exploring the effects of zirconium doping on barium titanate ceramics: structural, electrical, and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1