Learning on compressed molecular representations

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-04 DOI:10.1039/D4DD00162A
Jan Weinreich and Daniel Probst
{"title":"Learning on compressed molecular representations","authors":"Jan Weinreich and Daniel Probst","doi":"10.1039/D4DD00162A","DOIUrl":null,"url":null,"abstract":"<p >Last year, a preprint gained notoriety, proposing that a <em>k</em>-nearest neighbour classifier is able to outperform large-language models using compressed text as input and normalised compression distance (NCD) as a metric. In chemistry and biochemistry, molecules are often represented as strings, such as SMILES for small molecules or single-letter amino acid sequences for proteins. Here, we extend the previously introduced approach with support for regression and multitask classification and subsequently apply it to the prediction of molecular properties and protein–ligand binding affinities. We further propose converting numerical descriptors into string representations, enabling the integration of text input with domain-informed numerical descriptors. Finally, we show that the method can achieve performance competitive with chemical fingerprint- and GNN-based methodologies in general, and perform better than comparable methods on quantum chemistry and protein–ligand binding affinity prediction tasks.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 84-92"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00162a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00162a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Last year, a preprint gained notoriety, proposing that a k-nearest neighbour classifier is able to outperform large-language models using compressed text as input and normalised compression distance (NCD) as a metric. In chemistry and biochemistry, molecules are often represented as strings, such as SMILES for small molecules or single-letter amino acid sequences for proteins. Here, we extend the previously introduced approach with support for regression and multitask classification and subsequently apply it to the prediction of molecular properties and protein–ligand binding affinities. We further propose converting numerical descriptors into string representations, enabling the integration of text input with domain-informed numerical descriptors. Finally, we show that the method can achieve performance competitive with chemical fingerprint- and GNN-based methodologies in general, and perform better than comparable methods on quantum chemistry and protein–ligand binding affinity prediction tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压缩分子表征的学习
去年,一篇预印本声名大噪,它提出k近邻分类器能够胜过使用压缩文本作为输入和规范化压缩距离(NCD)作为度量的大型语言模型。在化学和生物化学中,分子通常用字符串表示,例如小分子用SMILES表示,蛋白质用单字母氨基酸序列表示。在这里,我们扩展了之前引入的方法,支持回归和多任务分类,并随后将其应用于分子性质和蛋白质配体结合亲和力的预测。我们进一步建议将数字描述符转换为字符串表示,从而实现文本输入与领域知情数字描述符的集成。最后,我们证明了该方法可以实现与基于化学指纹和基于gnn的方法相竞争的性能,并且在量子化学和蛋白质配体结合亲和力预测任务上优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1