Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products†

EES catalysis Pub Date : 2024-10-07 DOI:10.1039/D4EY00141A
Jiangnan Li, Xinyi Duan, Chao Wu, Yucheng Cao, Zhiyao Duan, Wenjun Fan, Peng Zhang and Fuxiang Zhang
{"title":"Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products†","authors":"Jiangnan Li, Xinyi Duan, Chao Wu, Yucheng Cao, Zhiyao Duan, Wenjun Fan, Peng Zhang and Fuxiang Zhang","doi":"10.1039/D4EY00141A","DOIUrl":null,"url":null,"abstract":"<p >Although electrocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO<small><sub>2</sub></small> electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C<small><sub>2+</sub></small> products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C<small><sub>2+</sub></small> partial current density of 663 mA cm<small><sup>−2</sup></small>, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO<small><sub>2</sub></small> into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during <em>in situ</em> infrared spectroscopy analysis.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 80-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00141a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00141a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although electrocatalytic reduction of carbon dioxide (CO2) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO2 electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C2+ products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C2+ partial current density of 663 mA cm−2, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO2 into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during in situ infrared spectroscopy analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜基电催化剂的面间协同作用有利于将CO2还原为C2+产物†
虽然电催化将二氧化碳还原为化学物质和燃料的研究已经广泛开展,但铜基催化剂的暴露面对产物选择性的影响仍然难以捉摸。为了解决这一问题,我们合成了一系列不同暴露铜(100)和铜(111)面比的Cu基催化剂,并对其进行了CO2电还原实验,在此基础上证明了对C2+产物选择性的显着的面间协同效应。优化后的Cu基面间协同催化剂在C2+偏电流密度为663 mA cm−2的情况下,具有78%的法拉第效率,大大优于仅具有Cu(111)或Cu(100)面协同催化剂。利用密度泛函理论计算揭示了面间协同效应,主要受益于Cu(111)面对*CO的有利吸附和活化,并显著促进了Cu(111)和Cu(100)面界面上的C-C耦合,通过原位红外光谱分析观察到良好的顶界和桥界*CO的表面覆盖以及* OC-CHO中间体的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Correction: High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis. Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1