首页 > 最新文献

EES catalysis最新文献

英文 中文
The dark side of metal exsolution: a combined in situ surface spectroscopic and electrochemical study on perovskite-type cathodes for high-temperature CO2 electrolysis.
Pub Date : 2025-03-11 DOI: 10.1039/d5ey00013k
Christian Melcher, Andreas Nenning, Florian Schrenk, Kirsten Rath, Christoph Rameshan, Alexander Karl Opitz

In solid oxide CO2 electrolysis cells, moderate activity and coking of the cathode are major issues that hinder commercialization of this important technology. It has been already shown that cathodes based on a mixed conducting oxide decorated with well-dispersed metal nanoparticles, which were grown via an exsolution process, are highly resilient to carbon deposition. Using perovskite-type oxides that contain reducible transition metals, such nanoparticles can be obtained in situ under sufficiently reducing conditions. However, the direct catalytic effect of exsolved metal nanoparticles on the CO2 splitting reaction has not yet been explored thoroughly (e.g. by employing well-defined model systems), thus, an in-depth understanding is still lacking. In this study, we aim at providing a crucial piece of insight into high-temperature electrochemical CO2 splitting on exsolution-decorated electrodes: we present the results of combined Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) and electrochemical measurements on three different ferrite perovskites, which were employed as thin film model electrodes. The investigated materials are: La0.6Ca0.4FeO3-δ (LCF), Nd0.6Ca0.4FeO3-δ (NCF), and Pr0.6Ca0.4FeO3-δ (PCF). The results obtained allow us to directly link the electrode's CO2 splitting activity to their surface chemistry. Especially, the electro-catalytic activity of the materials decorated with and without metallic iron nanoparticles was in focus. Our experiments reveal that in contrast to their beneficial role in H2O electrolysis, exsolved Fe0 metal particles deteriorate CO2 electrolysis activity. This behavior contrasts with expectations derived from earlier reports on porous samples, and is likely a consequence of the differences between the CO2 splitting and H2O splitting mechanism.

{"title":"The dark side of metal exsolution: a combined <i>in situ</i> surface spectroscopic and electrochemical study on perovskite-type cathodes for high-temperature CO<sub>2</sub> electrolysis.","authors":"Christian Melcher, Andreas Nenning, Florian Schrenk, Kirsten Rath, Christoph Rameshan, Alexander Karl Opitz","doi":"10.1039/d5ey00013k","DOIUrl":"10.1039/d5ey00013k","url":null,"abstract":"<p><p>In solid oxide CO<sub>2</sub> electrolysis cells, moderate activity and coking of the cathode are major issues that hinder commercialization of this important technology. It has been already shown that cathodes based on a mixed conducting oxide decorated with well-dispersed metal nanoparticles, which were grown <i>via</i> an exsolution process, are highly resilient to carbon deposition. Using perovskite-type oxides that contain reducible transition metals, such nanoparticles can be obtained <i>in situ</i> under sufficiently reducing conditions. However, the direct catalytic effect of exsolved metal nanoparticles on the CO<sub>2</sub> splitting reaction has not yet been explored thoroughly (<i>e.g.</i> by employing well-defined model systems), thus, an in-depth understanding is still lacking. In this study, we aim at providing a crucial piece of insight into high-temperature electrochemical CO<sub>2</sub> splitting on exsolution-decorated electrodes: we present the results of combined Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) and electrochemical measurements on three different ferrite perovskites, which were employed as thin film model electrodes. The investigated materials are: La<sub>0.6</sub>Ca<sub>0.4</sub>FeO<sub>3-<i>δ</i></sub> (LCF), Nd<sub>0.6</sub>Ca<sub>0.4</sub>FeO<sub>3-<i>δ</i></sub> (NCF), and Pr<sub>0.6</sub>Ca<sub>0.4</sub>FeO<sub>3-<i>δ</i></sub> (PCF). The results obtained allow us to directly link the electrode's CO<sub>2</sub> splitting activity to their surface chemistry. Especially, the electro-catalytic activity of the materials decorated with and without metallic iron nanoparticles was in focus. Our experiments reveal that in contrast to their beneficial role in H<sub>2</sub>O electrolysis, exsolved Fe<sup>0</sup> metal particles deteriorate CO<sub>2</sub> electrolysis activity. This behavior contrasts with expectations derived from earlier reports on porous samples, and is likely a consequence of the differences between the CO<sub>2</sub> splitting and H<sub>2</sub>O splitting mechanism.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals
Pub Date : 2025-02-06 DOI: 10.1039/D5EY90004B
Sibimol Luke, Manjunath Chatti, Darcy Simondson, Khang N. Dinh, Brittany V. Kerr, Tam D. Nguyen, Gamze Yilmaz, Bernt Johannessen, Douglas R. MacFarlane, Aswani Yella, Rosalie K. Hocking and Alexandr N. Simonov

Correction for ‘High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals’ by Sibimol Luke et al., EES. Catal., 2023, 1, 730–741, https://doi.org/10.1039/D3EY00046J.

{"title":"Correction: High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals","authors":"Sibimol Luke, Manjunath Chatti, Darcy Simondson, Khang N. Dinh, Brittany V. Kerr, Tam D. Nguyen, Gamze Yilmaz, Bernt Johannessen, Douglas R. MacFarlane, Aswani Yella, Rosalie K. Hocking and Alexandr N. Simonov","doi":"10.1039/D5EY90004B","DOIUrl":"https://doi.org/10.1039/D5EY90004B","url":null,"abstract":"<p >Correction for ‘High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals’ by Sibimol Luke <em>et al., EES. Catal.</em>, 2023, <strong>1</strong>, 730–741, https://doi.org/10.1039/D3EY00046J.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 347-347"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey90004b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis.
Pub Date : 2025-02-04 DOI: 10.1039/d4ey00250d
Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Camelia Borca, Thomas Huthwelker, Fabian Luca Buchauer, Mikkel Rykær Kraglund, Christodoulos Chatzichristodoulou, Eibhlin Meade, Julie Guehl, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri

The performance of Ni-based oxygen evolution reaction (OER) electrocatalysts is enhanced upon Fe incorporation into the structure during the synthesis process or electrochemical Fe uptake from the electrolyte. In light of the promising potential of metal-organic framework (MOF) electrocatalysts for water splitting, Ni-MOF-74 is used as a model catalyst to study the effect of Fe incorporation from KOH electrolyte on the electrocatalyst's OER activity and stability. The insights obtained from X-ray diffraction and operando X-ray absorption spectroscopy characterization of Ni-MOF-74 and an amorphous Ni metal organic compound (Ni-MOC*) reveal that Fe uptake enhances OER by two processes: higher Ni oxidation states and enhanced flexibility of both, the electronic state and the local structure, when cycling the potential below and above the OER onset. To demonstrate the impressive OER activity and stability in Fe containing KOH, an Ni-MOC* anode was implemented in an anion exchange membrane water electrolyzer (AEM-WE) with 3 ppm Fe containing 1 M KOH electrolyte resulting in an outstanding cell voltage of 1.7 V (at an anode potential of 1.51 V) at 60 °C and 0.5 A cm-2 exceeding 130 h of stable continuous operation.

{"title":"The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis.","authors":"Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Camelia Borca, Thomas Huthwelker, Fabian Luca Buchauer, Mikkel Rykær Kraglund, Christodoulos Chatzichristodoulou, Eibhlin Meade, Julie Guehl, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri","doi":"10.1039/d4ey00250d","DOIUrl":"10.1039/d4ey00250d","url":null,"abstract":"<p><p>The performance of Ni-based oxygen evolution reaction (OER) electrocatalysts is enhanced upon Fe incorporation into the structure during the synthesis process or electrochemical Fe uptake from the electrolyte. In light of the promising potential of metal-organic framework (MOF) electrocatalysts for water splitting, Ni-MOF-74 is used as a model catalyst to study the effect of Fe incorporation from KOH electrolyte on the electrocatalyst's OER activity and stability. The insights obtained from X-ray diffraction and operando X-ray absorption spectroscopy characterization of Ni-MOF-74 and an amorphous Ni metal organic compound (Ni-MOC*) reveal that Fe uptake enhances OER by two processes: higher Ni oxidation states and enhanced flexibility of both, the electronic state and the local structure, when cycling the potential below and above the OER onset. To demonstrate the impressive OER activity and stability in Fe containing KOH, an Ni-MOC* anode was implemented in an anion exchange membrane water electrolyzer (AEM-WE) with 3 ppm Fe containing 1 M KOH electrolyte resulting in an outstanding cell voltage of 1.7 V (at an anode potential of 1.51 V) at 60 °C and 0.5 A cm<sup>-2</sup> exceeding 130 h of stable continuous operation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143366930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production†
Pub Date : 2025-01-24 DOI: 10.1039/D4EY00211C
Haoyue Sun, Rui Tang, Lizhuo Wang, Yuhang Liang, Wenjie Yang, Zhisheng Lin, Xingmo Zhang, Kaijuan Chen, Weibin Liang, Shenlong Zhao, Rongkun Zheng and Jun Huang

Photoelectrocatalytic (PEC) water splitting offers a sustainable pathway for clean H2 production, and its integration with biomass valorization further enhances eco-economic efficiency. In this study, a BiVO4 catalyst with an optimized oxygen vacancy (Ov-BVO) concentration was grown on a SnO2 skeleton, achieving efficient PEC glycerol oxidation to selectively produce dihydroxyacetone (DHA) and H2 under neutral conditions. By incorporating Ov-BVO with SnO2, the light-harvesting and photo-induced carrier transfer efficiencies were significantly improved. Ov played a crucial role in selectively absorbing and activating the secondary –OH group of glycerol molecules, as revealed by theoretical and experimental studies. However, excessive Ov induced carrier recombination, underscoring the need for an optimal Ov concentration, which was achieved by tailoring heat treatment conditions. The SnO2/BVO-400 catalyst demonstrated a trade-off between the prolonged carrier lifetime and efficient reactant adsorption, exhibiting a PEC DHA productivity of 144 mmol m−2 h−1 with 26.5% selectivity, alongside H2 generation (1850 mmol m−2 h−1). This work lays the groundwork to achieve value-added chemical fabrication through neutral PEC glycerol reforming and the potential scale-up of this sustainable technology.

{"title":"Vacancy-engineered bismuth vanadate for photoelectrocatalytic glycerol oxidation with simultaneous hydrogen production†","authors":"Haoyue Sun, Rui Tang, Lizhuo Wang, Yuhang Liang, Wenjie Yang, Zhisheng Lin, Xingmo Zhang, Kaijuan Chen, Weibin Liang, Shenlong Zhao, Rongkun Zheng and Jun Huang","doi":"10.1039/D4EY00211C","DOIUrl":"https://doi.org/10.1039/D4EY00211C","url":null,"abstract":"<p >Photoelectrocatalytic (PEC) water splitting offers a sustainable pathway for clean H<small><sub>2</sub></small> production, and its integration with biomass valorization further enhances eco-economic efficiency. In this study, a BiVO<small><sub>4</sub></small> catalyst with an optimized oxygen vacancy (Ov-BVO) concentration was grown on a SnO<small><sub>2</sub></small> skeleton, achieving efficient PEC glycerol oxidation to selectively produce dihydroxyacetone (DHA) and H<small><sub>2</sub></small> under neutral conditions. By incorporating Ov-BVO with SnO<small><sub>2</sub></small>, the light-harvesting and photo-induced carrier transfer efficiencies were significantly improved. Ov played a crucial role in selectively absorbing and activating the secondary –OH group of glycerol molecules, as revealed by theoretical and experimental studies. However, excessive Ov induced carrier recombination, underscoring the need for an optimal Ov concentration, which was achieved by tailoring heat treatment conditions. The SnO<small><sub>2</sub></small>/BVO-400 catalyst demonstrated a trade-off between the prolonged carrier lifetime and efficient reactant adsorption, exhibiting a PEC DHA productivity of 144 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small> with 26.5% selectivity, alongside H<small><sub>2</sub></small> generation (1850 mmol m<small><sup>−2</sup></small> h<small><sup>−1</sup></small>). This work lays the groundwork to achieve value-added chemical fabrication through neutral PEC glycerol reforming and the potential scale-up of this sustainable technology.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 337-346"},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00211c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective catalytic hydrogenation of C2H2 from plasma-driven CH4 coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance.
Pub Date : 2025-01-16 DOI: 10.1039/d4ey00203b
Eduardo Morais, Fabio Cameli, Georgios D Stefanidis, Annemie Bogaerts

We study the selective catalytic hydrogenation of C2H2, the main product from non-oxidative CH4 coupling in gas-phase plasmas, to C2H4, a cornerstone of the global chemical industry, by experiments and temperature-dependent micro-kinetic modelling. The model is validated against new experimental data from a nanosecond pulsed plasma reactor integrated with a downstream catalytic bed consisting of Pd/Al2O3. We explore the effects of varying Pd loadings (0.1, 0.5, and 1 wt%) on the catalyst activity and the C2H4/C2H6 product distribution. Consistent with the experimental data, our surface micro-kinetic model shows that while higher Pd loadings lower the catalyst activation temperature for C2H2 conversion, they also induce over-hydrogenation to C2H6 at lower temperatures and increase oligomerisation in the experiments, which are detrimental to the C2H4 yield. The model also elucidates reaction mechanisms and pathways across different temperature regimes, expanding our understanding of the hydrogenation process beyond the experimental range. Besides highlighting the importance of optimising the metal loading to balance C2H4 and C2H6 selectivity, our findings demonstrate the effective implementation of post-plasma catalysis using a simple catalyst bed heated by hot gas from the plasma region. This study opens possibilities for testing different plasma sources, catalysts, gas flow magnitude and patterns, and catalyst bed-to-plasma distances.

{"title":"Selective catalytic hydrogenation of C<sub>2</sub>H<sub>2</sub> from plasma-driven CH<sub>4</sub> coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance.","authors":"Eduardo Morais, Fabio Cameli, Georgios D Stefanidis, Annemie Bogaerts","doi":"10.1039/d4ey00203b","DOIUrl":"10.1039/d4ey00203b","url":null,"abstract":"<p><p>We study the selective catalytic hydrogenation of C<sub>2</sub>H<sub>2</sub>, the main product from non-oxidative CH<sub>4</sub> coupling in gas-phase plasmas, to C<sub>2</sub>H<sub>4</sub>, a cornerstone of the global chemical industry, by experiments and temperature-dependent micro-kinetic modelling. The model is validated against new experimental data from a nanosecond pulsed plasma reactor integrated with a downstream catalytic bed consisting of Pd/Al<sub>2</sub>O<sub>3</sub>. We explore the effects of varying Pd loadings (0.1, 0.5, and 1 wt%) on the catalyst activity and the C<sub>2</sub>H<sub>4</sub>/C<sub>2</sub>H<sub>6</sub> product distribution. Consistent with the experimental data, our surface micro-kinetic model shows that while higher Pd loadings lower the catalyst activation temperature for C<sub>2</sub>H<sub>2</sub> conversion, they also induce over-hydrogenation to C<sub>2</sub>H<sub>6</sub> at lower temperatures and increase oligomerisation in the experiments, which are detrimental to the C<sub>2</sub>H<sub>4</sub> yield. The model also elucidates reaction mechanisms and pathways across different temperature regimes, expanding our understanding of the hydrogenation process beyond the experimental range. Besides highlighting the importance of optimising the metal loading to balance C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> selectivity, our findings demonstrate the effective implementation of post-plasma catalysis using a simple catalyst bed heated by hot gas from the plasma region. This study opens possibilities for testing different plasma sources, catalysts, gas flow magnitude and patterns, and catalyst bed-to-plasma distances.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of photoelectrochemical CO2 reduction on bare Cu(In,Ga)S2 (CIGS) thin films in aqueous media without co-catalysts†
Pub Date : 2025-01-15 DOI: 10.1039/D4EY00233D
Rajiv Ramanujam Prabhakar, Sudhanshu Shukla, Haoyi Li, R. Soyoung Kim, Wei Chen, Jérôme Beaudelot, Jan D’Haen, Daniely Reis Santos, Philippe M. Vereecken, Gian-Marco Rignanese, Ethan J. Crumlin, Junko Yano, Bart Vermang and Joel W. Ager

Photoelectrochemical (PEC) CO2 reduction (CO2R) on semiconductors provides a promising route to convert CO2 to fuels and chemicals. However, most semiconductors are not stable under CO2R conditions in aqueous media and require additional protection layers for long-term durability. To identify materials that would be stable and yield CO2R products in aqueous conditions, we investigated bare Cu(In,Ga)S2 (CIGS) thin films. We synthesized CIGS thin films by sulfurizing a sputtered Cu–In–Ga metal stack. The as-synthesized CIGS thin films are Cu-deficient and have a high enough bandgap (1.7 eV) suitable to perform CO2R. The bare CIGS photocathodes had faradaic yields of 14% for HCOO and 30% for CO in 0.1 M KHCO3 electrolyte without the use of any co-catalysts under 1 sun illumination at an applied bias of −0.4 V vs. RHE and operated stably for 80 min. Operando Raman spectroscopy under CO2R conditions showed that the dominant A1 mode of CIGS was unaffected during operation. Post-mortem X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis suggests that the CO2R stability could be related to self-protection caused by the in situ formation of oxides/hydroxides of Ga and In during operation. Density functional theory (DFT) calculations also reveal that Ga and In are the preferential sites for the adsorption of CO2R products, particularly HCOO. These results show that CIGS is a promising semiconductor material for performing direct semiconductor/electrolyte reactions in aqueous media for the PEC CO2R.

{"title":"Origin of photoelectrochemical CO2 reduction on bare Cu(In,Ga)S2 (CIGS) thin films in aqueous media without co-catalysts†","authors":"Rajiv Ramanujam Prabhakar, Sudhanshu Shukla, Haoyi Li, R. Soyoung Kim, Wei Chen, Jérôme Beaudelot, Jan D’Haen, Daniely Reis Santos, Philippe M. Vereecken, Gian-Marco Rignanese, Ethan J. Crumlin, Junko Yano, Bart Vermang and Joel W. Ager","doi":"10.1039/D4EY00233D","DOIUrl":"https://doi.org/10.1039/D4EY00233D","url":null,"abstract":"<p >Photoelectrochemical (PEC) CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) on semiconductors provides a promising route to convert CO<small><sub>2</sub></small> to fuels and chemicals. However, most semiconductors are not stable under CO<small><sub>2</sub></small>R conditions in aqueous media and require additional protection layers for long-term durability. To identify materials that would be stable and yield CO<small><sub>2</sub></small>R products in aqueous conditions, we investigated bare Cu(In,Ga)S<small><sub>2</sub></small> (CIGS) thin films. We synthesized CIGS thin films by sulfurizing a sputtered Cu–In–Ga metal stack. The as-synthesized CIGS thin films are Cu-deficient and have a high enough bandgap (1.7 eV) suitable to perform CO<small><sub>2</sub></small>R. The bare CIGS photocathodes had faradaic yields of 14% for HCOO<small><sup>−</sup></small> and 30% for CO in 0.1 M KHCO<small><sub>3</sub></small> electrolyte without the use of any co-catalysts under 1 sun illumination at an applied bias of −0.4 V <em>vs.</em> RHE and operated stably for 80 min. <em>Operando</em> Raman spectroscopy under CO<small><sub>2</sub></small>R conditions showed that the dominant A<small><sub>1</sub></small> mode of CIGS was unaffected during operation. Post-mortem X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis suggests that the CO<small><sub>2</sub></small>R stability could be related to self-protection caused by the <em>in situ</em> formation of oxides/hydroxides of Ga and In during operation. Density functional theory (DFT) calculations also reveal that Ga and In are the preferential sites for the adsorption of CO<small><sub>2</sub></small>R products, particularly HCOO<small><sup>−</sup></small>. These results show that CIGS is a promising semiconductor material for performing direct semiconductor/electrolyte reactions in aqueous media for the PEC CO<small><sub>2</sub></small>R.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 327-336"},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00233d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reversed gas diffusion electrode enables collection of high purity gas products from CO2 electroreduction†
Pub Date : 2025-01-14 DOI: 10.1039/D4EY00253A
Bo Wu, Lakshmi Devi Voleti, Aidan Q. Fenwick, Chao Wu, Jiguang Zhang, Ning Ling, Meng Wang, Yuewen Jia, Weng Weei Tjiu, Mingsheng Zhang, Zainul Aabdin, Shibo Xi, Channamallikarjun S. Mathpati, Sui Zhang, Harry A. Atwater, Iftekhar A. Karimi and Yanwei Lum

Electrochemical CO2 reduction (CO2R) in conventional systems typically generates highly diluted product output streams. This necessitates energy intensive and costly product separation, which potentially decreases the feasibility and economic viability of the process. Here, we describe the design and fabrication of a reversed gas diffusion electrode, which makes use of electrolyte pressure to channel products toward a collection chamber. Importantly, this strategy successfully excludes CO2 and permits gas products to be siphoned off at high purity. We further show that the electrolyte pressure and gas diffusion layer pore size are the key factors which govern the product collection efficiency. Using a nanoporous Au catalyst, we showcase the continuous production of high purity syngas over an extended 76 h period, operating at a full-cell energy efficiency of 37%. Importantly, we also demonstrate that this system is oxygen-tolerant, with no parasitic loss of current towards the oxygen reduction reaction even with a 95% CO2 + 5% O2 gas feed. Taken together, our results introduce a new design approach for CO2R electrolyzer systems.

{"title":"A reversed gas diffusion electrode enables collection of high purity gas products from CO2 electroreduction†","authors":"Bo Wu, Lakshmi Devi Voleti, Aidan Q. Fenwick, Chao Wu, Jiguang Zhang, Ning Ling, Meng Wang, Yuewen Jia, Weng Weei Tjiu, Mingsheng Zhang, Zainul Aabdin, Shibo Xi, Channamallikarjun S. Mathpati, Sui Zhang, Harry A. Atwater, Iftekhar A. Karimi and Yanwei Lum","doi":"10.1039/D4EY00253A","DOIUrl":"https://doi.org/10.1039/D4EY00253A","url":null,"abstract":"<p >Electrochemical CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) in conventional systems typically generates highly diluted product output streams. This necessitates energy intensive and costly product separation, which potentially decreases the feasibility and economic viability of the process. Here, we describe the design and fabrication of a reversed gas diffusion electrode, which makes use of electrolyte pressure to channel products toward a collection chamber. Importantly, this strategy successfully excludes CO<small><sub>2</sub></small> and permits gas products to be siphoned off at high purity. We further show that the electrolyte pressure and gas diffusion layer pore size are the key factors which govern the product collection efficiency. Using a nanoporous Au catalyst, we showcase the continuous production of high purity syngas over an extended 76 h period, operating at a full-cell energy efficiency of 37%. Importantly, we also demonstrate that this system is oxygen-tolerant, with no parasitic loss of current towards the oxygen reduction reaction even with a 95% CO<small><sub>2</sub></small> + 5% O<small><sub>2</sub></small> gas feed. Taken together, our results introduce a new design approach for CO<small><sub>2</sub></small>R electrolyzer systems.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 318-326"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00253a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighboring effects of single-atom cobalt enable high-performance CO2 photoreduction†
Pub Date : 2025-01-13 DOI: 10.1039/D4EY00274A
Wenkai Yan, Yajun Zhang, Guojun Dong and Yingpu Bi

Herein, we demonstrate the unique neighboring effect of single-cobalt active sites anchored on BiOCl nanosheets with high CO2 photoreduction performances by combining in situ X-ray photoelectron with in situ infrared spectroscopy. More specifically, single-atom Co sites demonstrate an exceptional electron-enriched feature from adjacent Bi atoms, which facilitates the formation of *CO2–Co and *H2O–Bi species, respectively. Under light irradiation, the photoinduced electron transfer from adjacent Bi atoms to single Co active sites is favorable for the formation *COOH and *CO intermediates, accompanied by the oxidation of H2O molecules into *OH and *OOH species on Bi sites. As a result, these dynamic electronic interactions between single-atom Co and adjacent Bi sites are responsible for a record CO evolution activity of 172.6 μmol g−1 h−1 under sunlight illumination, which exceeds that of pristine BiOCl by nearly one order of magnitude. These findings provide a fundamental understanding of the intrinsic neighboring effect between single-atom sites and adjacent atoms, which should be crucial and essential for the development of high-performance single-atom catalysts.

{"title":"Neighboring effects of single-atom cobalt enable high-performance CO2 photoreduction†","authors":"Wenkai Yan, Yajun Zhang, Guojun Dong and Yingpu Bi","doi":"10.1039/D4EY00274A","DOIUrl":"https://doi.org/10.1039/D4EY00274A","url":null,"abstract":"<p >Herein, we demonstrate the unique neighboring effect of single-cobalt active sites anchored on BiOCl nanosheets with high CO<small><sub>2</sub></small> photoreduction performances by combining <em>in situ</em> X-ray photoelectron with <em>in situ</em> infrared spectroscopy. More specifically, single-atom Co sites demonstrate an exceptional electron-enriched feature from adjacent Bi atoms, which facilitates the formation of *CO<small><sub>2</sub></small>–Co and *H<small><sub>2</sub></small>O–Bi species, respectively. Under light irradiation, the photoinduced electron transfer from adjacent Bi atoms to single Co active sites is favorable for the formation *COOH and *CO intermediates, accompanied by the oxidation of H<small><sub>2</sub></small>O molecules into *OH and *OOH species on Bi sites. As a result, these dynamic electronic interactions between single-atom Co and adjacent Bi sites are responsible for a record CO evolution activity of 172.6 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> under sunlight illumination, which exceeds that of pristine BiOCl by nearly one order of magnitude. These findings provide a fundamental understanding of the intrinsic neighboring effect between single-atom sites and adjacent atoms, which should be crucial and essential for the development of high-performance single-atom catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 268-273"},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00274a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated CO2 capture and electrochemical conversion: coupled effects of transport, kinetics and thermodynamics in the direct reduction of captured-CO2 adducts†
Pub Date : 2025-01-08 DOI: 10.1039/D4EY00285G
Avishek Banerjee and Carlos G. Morales-Guio

Upgrading anthropogenic CO2 from concentrated point sources or directly from the atmosphere is a valuable approach in closing the carbon cycle. Existing processes capture the CO2, concentrate it into pure gas streams, transport it, and then convert it into fuels and chemicals in a separate process plant. This sequential approach results in higher energy and operating costs which can be reduced by integrating the capture and conversion steps to directly reduce the captured CO2-bound adduct to value-added products. The direct reduction of the captured CO2-bound adduct is called the captured-CO2 reduction reaction (c-CO2RR). Understanding of c-CO2RR has been obscured by the higher intrinsic complexity of the system. The CO2 capture media is a complex space of several buffer reactions that allow the co-existence of different carbon species in solution depending on CO2 loading, temperature, pressure, and pH. In order to design improved capture agents and catalysts for integrated CO2 capture and conversion, it is essential to identify the carbon source and the primary factors influencing product formation on a c-CO2RR catalyst. This review delineates the strategies to determine the active carbon species for integrated CO2 capture and conversion systems. Furthermore, it summarizes the fundamental applications of mass transport, thermodynamics, and kinetics across various c-CO2RR scenarios.

{"title":"Integrated CO2 capture and electrochemical conversion: coupled effects of transport, kinetics and thermodynamics in the direct reduction of captured-CO2 adducts†","authors":"Avishek Banerjee and Carlos G. Morales-Guio","doi":"10.1039/D4EY00285G","DOIUrl":"https://doi.org/10.1039/D4EY00285G","url":null,"abstract":"<p >Upgrading anthropogenic CO<small><sub>2</sub></small> from concentrated point sources or directly from the atmosphere is a valuable approach in closing the carbon cycle. Existing processes capture the CO<small><sub>2</sub></small>, concentrate it into pure gas streams, transport it, and then convert it into fuels and chemicals in a separate process plant. This sequential approach results in higher energy and operating costs which can be reduced by integrating the capture and conversion steps to directly reduce the captured CO<small><sub>2</sub></small>-bound adduct to value-added products. The direct reduction of the captured CO<small><sub>2</sub></small>-bound adduct is called the captured-CO<small><sub>2</sub></small> reduction reaction (c-CO<small><sub>2</sub></small>RR). Understanding of c-CO<small><sub>2</sub></small>RR has been obscured by the higher intrinsic complexity of the system. The CO<small><sub>2</sub></small> capture media is a complex space of several buffer reactions that allow the co-existence of different carbon species in solution depending on CO<small><sub>2</sub></small> loading, temperature, pressure, and pH. In order to design improved capture agents and catalysts for integrated CO<small><sub>2</sub></small> capture and conversion, it is essential to identify the carbon source and the primary factors influencing product formation on a c-CO<small><sub>2</sub></small>RR catalyst. This review delineates the strategies to determine the active carbon species for integrated CO<small><sub>2</sub></small> capture and conversion systems. Furthermore, it summarizes the fundamental applications of mass transport, thermodynamics, and kinetics across various c-CO<small><sub>2</sub></small>RR scenarios.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 205-234"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00285g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ammonia synthesis from nitrate reduction by the modulation of a built-in electric field and external stimuli
Pub Date : 2025-01-07 DOI: 10.1039/D4EY00245H
Shaoce Zhang, Rong Zhang, Ying Guo and Chunyi Zhi

Ammonia (NH3) is a vital chemical feedstock and a carbon-free energy source. The reduction of nitrate (NO3) from environmental pollutants is a sustainable method for NH3 production compared with the industrially intensive Haber–Bosch method, which can mitigate energy and environmental concerns. However, due to the involvement of multi-electron transfer-proton coupling processes, the NO3 reduction reaction (NO3RR) exhibits sluggish kinetics and significant side reactions. This review provides a comprehensive summary of recent research progress in facilitating NO3RRs using a built-in electric field and external stimuli. The paper commences by introducing the mechanisms and challenges of the NO3RR, subsequently focusing on strategies for built-in electric field/external stimuli-assisted catalytic reactions. The internal electric field can be triggered by constructing a Mott–Schottky heterojunction and a semiconductor–semiconductor heterojunction, adjusting the coordination environment of active sites, and regulating the electrical double layer, while the external stimuli include optical, stress, and thermal stimuli. This review focuses on the activation and adsorption processes of reactants and intermediates by a built-in electric field/external stimuli, and their influence on the thermodynamics and kinetics of reactions. Finally, we summarize the strategies for built-in electric field/external stimuli-assisted NO3RRs, highlight the challenges of achieving high activity and selectivity in NH3 production, and provide clear guidance for future research.

{"title":"Ammonia synthesis from nitrate reduction by the modulation of a built-in electric field and external stimuli","authors":"Shaoce Zhang, Rong Zhang, Ying Guo and Chunyi Zhi","doi":"10.1039/D4EY00245H","DOIUrl":"https://doi.org/10.1039/D4EY00245H","url":null,"abstract":"<p >Ammonia (NH<small><sub>3</sub></small>) is a vital chemical feedstock and a carbon-free energy source. The reduction of nitrate (NO<small><sub>3</sub></small><small><sup>−</sup></small>) from environmental pollutants is a sustainable method for NH<small><sub>3</sub></small> production compared with the industrially intensive Haber–Bosch method, which can mitigate energy and environmental concerns. However, due to the involvement of multi-electron transfer-proton coupling processes, the NO<small><sub>3</sub></small><small><sup>−</sup></small> reduction reaction (NO<small><sub>3</sub></small>RR) exhibits sluggish kinetics and significant side reactions. This review provides a comprehensive summary of recent research progress in facilitating NO<small><sub>3</sub></small>RRs using a built-in electric field and external stimuli. The paper commences by introducing the mechanisms and challenges of the NO<small><sub>3</sub></small>RR, subsequently focusing on strategies for built-in electric field/external stimuli-assisted catalytic reactions. The internal electric field can be triggered by constructing a Mott–Schottky heterojunction and a semiconductor–semiconductor heterojunction, adjusting the coordination environment of active sites, and regulating the electrical double layer, while the external stimuli include optical, stress, and thermal stimuli. This review focuses on the activation and adsorption processes of reactants and intermediates by a built-in electric field/external stimuli, and their influence on the thermodynamics and kinetics of reactions. Finally, we summarize the strategies for built-in electric field/external stimuli-assisted NO<small><sub>3</sub></small>RRs, highlight the challenges of achieving high activity and selectivity in NH<small><sub>3</sub></small> production, and provide clear guidance for future research.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 235-253"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00245h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EES catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1