Efficient development of high drug loaded posaconazole tablets enabled by amorphous solid dispersion

Tianyi Xiang, Sichen Song, Ronald A. Siegel and Changquan Calvin Sun
{"title":"Efficient development of high drug loaded posaconazole tablets enabled by amorphous solid dispersion","authors":"Tianyi Xiang, Sichen Song, Ronald A. Siegel and Changquan Calvin Sun","doi":"10.1039/D4PM00301B","DOIUrl":null,"url":null,"abstract":"<p >Determining the upper limits of drug loading in amorphous solid dispersion (ASD) with sufficient physical stability and release performance is critical for developing ASD-enabled tablets for poorly soluble drugs. Recent studies have highlighted the utility of the polymer overlap concentration, <em>c</em>*, in maintaining the physical stability of ASD formulations. The present work demonstrates the feasibility of effectively developing high drug loaded ASD tablets using the <em>c</em>* concept as a guide, with posaconazole as the model drug. By incorporating various material sparing formulation technologies, a record high 50% POS loaded tablet with adequate manufacturability and satisfactory dissolution performance was developed using 1.5 g of POS within 14 days. Physical stabilities of the ASD and tablet were maintained for at least 6 months under ambient conditions and 1 month at 40 °C.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 1","pages":" 178-185"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00301b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00301b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the upper limits of drug loading in amorphous solid dispersion (ASD) with sufficient physical stability and release performance is critical for developing ASD-enabled tablets for poorly soluble drugs. Recent studies have highlighted the utility of the polymer overlap concentration, c*, in maintaining the physical stability of ASD formulations. The present work demonstrates the feasibility of effectively developing high drug loaded ASD tablets using the c* concept as a guide, with posaconazole as the model drug. By incorporating various material sparing formulation technologies, a record high 50% POS loaded tablet with adequate manufacturability and satisfactory dissolution performance was developed using 1.5 g of POS within 14 days. Physical stabilities of the ASD and tablet were maintained for at least 6 months under ambient conditions and 1 month at 40 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非晶态固体分散体高效制备高载泊沙康唑片
确定具有足够物理稳定性和释放性能的非晶固体分散体(ASD)的载药量上限对于开发用于难溶性药物的ASD片剂至关重要。最近的研究强调了聚合物重叠浓度c*在维持ASD配方的物理稳定性方面的效用。本研究以泊沙康唑为模型药物,以c*概念为指导,有效开发高负荷ASD片剂的可行性。通过结合多种节材配方技术,在14天内,使用1.5 g的POS,开发出了具有足够可制造性和令人满意溶出性能的创纪录的50% POS片。ASD和片剂在常温条件下至少保持6个月的物理稳定性,在40℃下保持1个月的物理稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Injectable sustained-release hydrogel for high-concentration antibody delivery† Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes Back cover Dual-action antimicrobial surface coatings: methylene blue and quaternary ammonium cation conjugated silica nanoparticles†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1