Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes

Lohare Rahul Sanjay, Makka Krupali Ashokbhai, Shubham Ghatole, Subhadeep Roy, Kardile Punam Kashinath and Santanu Kaity
{"title":"Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes","authors":"Lohare Rahul Sanjay, Makka Krupali Ashokbhai, Shubham Ghatole, Subhadeep Roy, Kardile Punam Kashinath and Santanu Kaity","doi":"10.1039/D4PM00191E","DOIUrl":null,"url":null,"abstract":"<p >Oral drug delivery remains the most favored method of administration due to its convenience and patient compliance. However, the unpleasant taste of certain medications often leads to poor acceptance, particularly among pediatric and geriatric patients. To address this issue, taste-masking (TM) technologies have emerged as effective solutions for improving the palatability of oral drugs. This review provides an overview of the key features of TM technologies, including the properties of materials used, their mechanisms, and applications in drug delivery. Typically, TM materials work by complexing or encapsulating drug molecules to prevent direct interaction with taste receptors, thus mitigating unpleasant flavors and enhancing the overall sensory experience. The review explores a range of materials—both synthetic and natural—and various TM technologies designed to mask bitter taste. Additionally, it discusses the latest methods for assessing the effectiveness of TM and the current regulatory landscape surrounding the use of these technologies in drug delivery.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 1","pages":" 59-81"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00191e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00191e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oral drug delivery remains the most favored method of administration due to its convenience and patient compliance. However, the unpleasant taste of certain medications often leads to poor acceptance, particularly among pediatric and geriatric patients. To address this issue, taste-masking (TM) technologies have emerged as effective solutions for improving the palatability of oral drugs. This review provides an overview of the key features of TM technologies, including the properties of materials used, their mechanisms, and applications in drug delivery. Typically, TM materials work by complexing or encapsulating drug molecules to prevent direct interaction with taste receptors, thus mitigating unpleasant flavors and enhancing the overall sensory experience. The review explores a range of materials—both synthetic and natural—and various TM technologies designed to mask bitter taste. Additionally, it discusses the latest methods for assessing the effectiveness of TM and the current regulatory landscape surrounding the use of these technologies in drug delivery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
战胜药物配方的苦味以获得更好治疗效果的策略
口服给药由于其方便和患者依从性,仍然是最受欢迎的给药方法。然而,某些药物令人不快的味道往往导致接受度不高,特别是在儿科和老年患者中。为了解决这一问题,掩味技术已经成为改善口服药物适口性的有效解决方案。本文综述了TM技术的主要特点,包括所使用的材料的性质,它们的机制以及在药物传递中的应用。通常,TM材料通过络合或封装药物分子来防止与味觉受体的直接相互作用,从而减轻不愉快的味道并增强整体感官体验。这篇综述探讨了一系列材料——包括合成的和天然的——以及各种旨在掩盖苦味的TM技术。此外,它还讨论了评估TM有效性的最新方法,以及围绕这些技术在药物输送中使用的当前监管环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Injectable sustained-release hydrogel for high-concentration antibody delivery† Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes Back cover Dual-action antimicrobial surface coatings: methylene blue and quaternary ammonium cation conjugated silica nanoparticles†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1