Peng Sun, Kelan Liu, Cunjun Dong, Li Yan, Hongyan Zhu, Mingliang Fang, Donglei Fu, Xinghai Liu
{"title":"Optimizing polylactic acid: synthesis, properties, and regulatory strategies for food packaging applications","authors":"Peng Sun, Kelan Liu, Cunjun Dong, Li Yan, Hongyan Zhu, Mingliang Fang, Donglei Fu, Xinghai Liu","doi":"10.1007/s11705-025-2523-8","DOIUrl":null,"url":null,"abstract":"<div><p>Polylactic acid, a biodegradable polymer derived from renewable resources, is increasingly used in food packaging due to its transparency, renewability, and food safety. However, its mechanical properties, heat resistance, and barrier performance present significant challenges that limit its application. Currently, there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application. Hence, this review provides an overview of polylactic acid production processes, including the synthesis of lactic acid and lactide, as well as methods such as polycondensation and ring-opening polymerization. We critically examine the advantages and limitations of polylactic acid in various food packaging contexts, focusing on strategies to enhance its mechanical properties, barrier performance against oxygen and water vapor, surface hydrophobicity, thermal stability, and resistance to ultraviolet light. Furthermore, we summarize recent advancements in polylactic acid applications for food packaging, highlighting innovations in antioxidant, antimicrobial, and freshness indicator packaging. These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2523-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polylactic acid, a biodegradable polymer derived from renewable resources, is increasingly used in food packaging due to its transparency, renewability, and food safety. However, its mechanical properties, heat resistance, and barrier performance present significant challenges that limit its application. Currently, there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application. Hence, this review provides an overview of polylactic acid production processes, including the synthesis of lactic acid and lactide, as well as methods such as polycondensation and ring-opening polymerization. We critically examine the advantages and limitations of polylactic acid in various food packaging contexts, focusing on strategies to enhance its mechanical properties, barrier performance against oxygen and water vapor, surface hydrophobicity, thermal stability, and resistance to ultraviolet light. Furthermore, we summarize recent advancements in polylactic acid applications for food packaging, highlighting innovations in antioxidant, antimicrobial, and freshness indicator packaging. These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.