Mahmoud M. Awd Allah, Mahmoud F. Abd El-Halim, Mohamed A. Abbas, Ali Saeed Almuflih, Dalia I. Saleh, Marwa A. Abd El-baky
{"title":"Discovering the Impact of Printing Parameters on the Crashworthiness Performance of 3D-Printed Cellular Structures","authors":"Mahmoud M. Awd Allah, Mahmoud F. Abd El-Halim, Mohamed A. Abbas, Ali Saeed Almuflih, Dalia I. Saleh, Marwa A. Abd El-baky","doi":"10.1007/s12221-024-00799-8","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing vehicle crashworthiness is critical for improving passenger safety during collisions. Subsequently, this research seeks to explore both the deformation characteristics and the crashworthiness behaviors of square tubes made from 3D-printed polylactic acid (PLA). For this reasons, three printing parameters are examined, each at four different levels: infill pattern structure (gyroid, honeycomb, Schwarz P, and Schwarz D), infill density (5, 10, 20, and 30%), and layer height (0.15, 0.20, 0.25, and 0.30 mm). The structures were exposed to quasi-static axial compression loading to assess their performance. During the testing of these tubes, data were systematically gathered on crashing load, absorbed energy, and displacement responses. In addition, the failure histories of each tube were accurately documented. The evaluation of crashworthiness involved the measurement of several critical indicators: the initial peak crash load (<span>\\({F}_{\\text{ip}}\\)</span>), the total energy absorbed (<i>U</i>), the mean crash load (<span>\\({F}_{\\text{m}}\\)</span>), the specific absorbed energy (SEA), and the crash force efficiency (CFE). To identify the optimal configuration, a multi-attribute decision-making (MADM) approach was employed. This analysis revealed that the combination of honeycomb pattern structure, 30% infill density, and a layer height of 0.20 mm (denoted as H30/0.20), which achieved <span>\\({F}_{\\text{ip}}\\)</span>, U, <span>\\({F}_{\\text{m}}\\)</span>, SEA, and CFE of 26.35 kN, 1440.73 J, 24.01 J/g, 33.54 kN, and 0.911, respectively, offered the best performance in terms of crashworthiness.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"297 - 315"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00799-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing vehicle crashworthiness is critical for improving passenger safety during collisions. Subsequently, this research seeks to explore both the deformation characteristics and the crashworthiness behaviors of square tubes made from 3D-printed polylactic acid (PLA). For this reasons, three printing parameters are examined, each at four different levels: infill pattern structure (gyroid, honeycomb, Schwarz P, and Schwarz D), infill density (5, 10, 20, and 30%), and layer height (0.15, 0.20, 0.25, and 0.30 mm). The structures were exposed to quasi-static axial compression loading to assess their performance. During the testing of these tubes, data were systematically gathered on crashing load, absorbed energy, and displacement responses. In addition, the failure histories of each tube were accurately documented. The evaluation of crashworthiness involved the measurement of several critical indicators: the initial peak crash load (\({F}_{\text{ip}}\)), the total energy absorbed (U), the mean crash load (\({F}_{\text{m}}\)), the specific absorbed energy (SEA), and the crash force efficiency (CFE). To identify the optimal configuration, a multi-attribute decision-making (MADM) approach was employed. This analysis revealed that the combination of honeycomb pattern structure, 30% infill density, and a layer height of 0.20 mm (denoted as H30/0.20), which achieved \({F}_{\text{ip}}\), U, \({F}_{\text{m}}\), SEA, and CFE of 26.35 kN, 1440.73 J, 24.01 J/g, 33.54 kN, and 0.911, respectively, offered the best performance in terms of crashworthiness.
提高车辆的耐撞性对于提高乘客在碰撞中的安全至关重要。随后,本研究试图探索3d打印聚乳酸(PLA)方管的变形特性和耐撞性能。出于这个原因,我们检查了三个打印参数,每个参数在四个不同的级别:填充图案结构(旋转、蜂窝、施瓦茨P和施瓦茨D),填充密度(5、10、20和30)%), and layer height (0.15, 0.20, 0.25, and 0.30 mm). The structures were exposed to quasi-static axial compression loading to assess their performance. During the testing of these tubes, data were systematically gathered on crashing load, absorbed energy, and displacement responses. In addition, the failure histories of each tube were accurately documented. The evaluation of crashworthiness involved the measurement of several critical indicators: the initial peak crash load (\({F}_{\text{ip}}\)), the total energy absorbed (U), the mean crash load (\({F}_{\text{m}}\)), the specific absorbed energy (SEA), and the crash force efficiency (CFE). To identify the optimal configuration, a multi-attribute decision-making (MADM) approach was employed. This analysis revealed that the combination of honeycomb pattern structure, 30% infill density, and a layer height of 0.20 mm (denoted as H30/0.20), which achieved \({F}_{\text{ip}}\), U, \({F}_{\text{m}}\), SEA, and CFE of 26.35 kN, 1440.73 J, 24.01 J/g, 33.54 kN, and 0.911, respectively, offered the best performance in terms of crashworthiness.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers