{"title":"Nonlinear Soft-Tissue Elasticity, Remodeling, and Degradation Described by an Extended Finsler Geometry","authors":"J. D. Clayton","doi":"10.1007/s10659-025-10108-w","DOIUrl":null,"url":null,"abstract":"<div><p>A continuum mechanical theory incorporating an extension of Finsler geometry is formulated for fibrous soft solids. Especially if of biologic origin, such solids are nonlinear elastic with evolving microstructures. For example, elongated cells or collagen fibers can stretch and rotate independently of motions of their embedding matrix. Here, a director vector or internal state vector, not always of unit length, in generalized Finsler space relates to a physical mechanism, with possible preferred direction and intensity, in the microstructure. Classical Finsler geometry is extended to accommodate multiple director vectors (i.e., multiple fibers in both a differential-geometric and physical sense) at each point on the base manifold. A metric tensor can depend on the ensemble of director vector fields. Residual or remnant strains from biologic growth, remodeling, and degradation manifest as non-affine fiber and matrix stretches. These remnant stretch fields are quantified by internal state vectors and a corresponding, generally non-Euclidean, metric tensor. Euler-Lagrange equations derived from a variational principle yield equilibrium configurations satisfying balances of forces from elastic energy, remodeling and cohesive energies, and external chemical-biological interactions. Given certain assumptions, the model can reduce to a representation in Riemannian geometry. Residual stresses that emerge from a non-Euclidean material metric in the Riemannian setting are implicitly included in the Finslerian setting. The theory is used to study stress and damage in the ventricle (heart muscle) expanding or contracting under internal and external pressure. Remnant strains from remodeling can reduce stress concentrations and mitigate tissue damage under severe loading.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10108-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A continuum mechanical theory incorporating an extension of Finsler geometry is formulated for fibrous soft solids. Especially if of biologic origin, such solids are nonlinear elastic with evolving microstructures. For example, elongated cells or collagen fibers can stretch and rotate independently of motions of their embedding matrix. Here, a director vector or internal state vector, not always of unit length, in generalized Finsler space relates to a physical mechanism, with possible preferred direction and intensity, in the microstructure. Classical Finsler geometry is extended to accommodate multiple director vectors (i.e., multiple fibers in both a differential-geometric and physical sense) at each point on the base manifold. A metric tensor can depend on the ensemble of director vector fields. Residual or remnant strains from biologic growth, remodeling, and degradation manifest as non-affine fiber and matrix stretches. These remnant stretch fields are quantified by internal state vectors and a corresponding, generally non-Euclidean, metric tensor. Euler-Lagrange equations derived from a variational principle yield equilibrium configurations satisfying balances of forces from elastic energy, remodeling and cohesive energies, and external chemical-biological interactions. Given certain assumptions, the model can reduce to a representation in Riemannian geometry. Residual stresses that emerge from a non-Euclidean material metric in the Riemannian setting are implicitly included in the Finslerian setting. The theory is used to study stress and damage in the ventricle (heart muscle) expanding or contracting under internal and external pressure. Remnant strains from remodeling can reduce stress concentrations and mitigate tissue damage under severe loading.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.