KVS Chaithanya, Jan Rozman, Andrej Košmrlj, Rastko Sknepnek
{"title":"Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers","authors":"KVS Chaithanya, Jan Rozman, Andrej Košmrlj, Rastko Sknepnek","doi":"10.1007/s10659-025-10120-0","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue homeostasis, the biological process of maintaining a steady state in tissue via control of cell proliferation and death, is essential for the development, growth, maintenance, and proper function of living organisms. Disruptions to this process can lead to serious diseases and even death. In this study, we use the vertex model for the cell-level description of tissue mechanics to investigate the impact of the tissue environment and local mechanical properties of cells on homeostasis in confined epithelial tissues. We find a dynamic steady state, where the balance between cell divisions and removals sustains homeostasis, and characterise the homeostatic state in terms of cell count, tissue area, homeostatic pressure, and the cells’ neighbour count distribution. This work, therefore, sheds light on the mechanisms underlying tissue homeostasis and highlights the importance of mechanics in its control.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10120-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10120-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue homeostasis, the biological process of maintaining a steady state in tissue via control of cell proliferation and death, is essential for the development, growth, maintenance, and proper function of living organisms. Disruptions to this process can lead to serious diseases and even death. In this study, we use the vertex model for the cell-level description of tissue mechanics to investigate the impact of the tissue environment and local mechanical properties of cells on homeostasis in confined epithelial tissues. We find a dynamic steady state, where the balance between cell divisions and removals sustains homeostasis, and characterise the homeostatic state in terms of cell count, tissue area, homeostatic pressure, and the cells’ neighbour count distribution. This work, therefore, sheds light on the mechanisms underlying tissue homeostasis and highlights the importance of mechanics in its control.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.