An Investigation into the Effect of Prandtl Number on Heat Transfer in a Liquid Metal Flow in a Round Tube at a Constant Peclet Number

IF 1 Q4 ENERGY & FUELS Thermal Engineering Pub Date : 2025-01-16 DOI:10.1134/S0040601524700575
D. A. Ognerubov, Ya. I. Listratov
{"title":"An Investigation into the Effect of Prandtl Number on Heat Transfer in a Liquid Metal Flow in a Round Tube at a Constant Peclet Number","authors":"D. A. Ognerubov,&nbsp;Ya. I. Listratov","doi":"10.1134/S0040601524700575","DOIUrl":null,"url":null,"abstract":"<p>The effect of dimensionless operating parameters (Reynolds (Re) and Prandtl (Pr) numbers) on the dimensionless heat-transfer coefficient (Nusselt (Nu) number) is examined in a liquid metal flow in a round tube. The Nu number dependences at Pr <span>\\( \\ll \\)</span> 1 (liquid metals) are often presented as Nu = <i>f</i> (Pe), where Pe = Re Pr is the Peclet number. The simplified dependence for Nu relies very much on the fact that determination of the dependence Nu = <i>f</i> (Re, Pr) from the experiments with liquid metal coolants is a challenging matter since such experiments involve great difficulties. Moreover, the measurement error in in such experiments is 10–20% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1076 - 1082"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of dimensionless operating parameters (Reynolds (Re) and Prandtl (Pr) numbers) on the dimensionless heat-transfer coefficient (Nusselt (Nu) number) is examined in a liquid metal flow in a round tube. The Nu number dependences at Pr \( \ll \) 1 (liquid metals) are often presented as Nu = f (Pe), where Pe = Re Pr is the Peclet number. The simplified dependence for Nu relies very much on the fact that determination of the dependence Nu = f (Re, Pr) from the experiments with liquid metal coolants is a challenging matter since such experiments involve great difficulties. Moreover, the measurement error in in such experiments is 10–20% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒定小波数下普朗特数对圆管内金属液流动传热影响的研究
研究了圆管内液态金属流动中无量纲运行参数(雷诺数和普朗特尔数)对无量纲换热系数(努塞尔数)的影响。在Pr \( \ll \) 1(液态金属)中的Nu数依赖关系通常表示为Nu = f (Pe),其中Pe = Re Pr是佩雷数。Nu的简化依赖关系很大程度上依赖于这样一个事实,即从液态金属冷却剂实验中确定Nu = f (Re, Pr)的依赖关系是一件具有挑战性的事情,因为这种实验涉及很大的困难。实验测量误差在10-20之间% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
期刊最新文献
The Formulae for Calculating Radiative Heat Fluxes in Systems with Partially Transparent Structures Computational Substantiation of Model Experiments for Studying the Occurrence Conditions of Condensation-Induced Water Hammers in the Injection Pipeline of a Pressurizer System Influence of the Operating Parameters of the Irrigation Heat Exchanger of a Desalinating Plant on the Efficiency of Its Operation Results of Full Scale Tests of Ion-Plasma Coatings in a Fluidized Bed Cyclone Stoker A GTU Model Based on a Recurrent Neural Network: Features of Elaboration and Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1