Verification and Validation of the EUCLID/V2 Integrated Code’s HEFEST-FR Module

IF 0.9 Q4 ENERGY & FUELS Thermal Engineering Pub Date : 2025-01-16 DOI:10.1134/S0040601524700551
S. V. Tsaun, A. A. Butov, I. A. Klimonov, E. V. Moiseenko, N. A. Mosunova, V. F. Strizhov, E. V. Usov, V. I. Chukhno
{"title":"Verification and Validation of the EUCLID/V2 Integrated Code’s HEFEST-FR Module","authors":"S. V. Tsaun,&nbsp;A. A. Butov,&nbsp;I. A. Klimonov,&nbsp;E. V. Moiseenko,&nbsp;N. A. Mosunova,&nbsp;V. F. Strizhov,&nbsp;E. V. Usov,&nbsp;V. I. Chukhno","doi":"10.1134/S0040601524700551","DOIUrl":null,"url":null,"abstract":"<p>For substantiating liquid metal cooled reactor plants, the EUCLID/V2 integrated code is being developed, and its verification and validation are carried out for certifying it at the Scientific and Technical Center for Nuclear and Radiation Safety (NTC NRB). One of the integrated code’s main parts is the severe accident block, which includes the SAFR module for calculating the destruction of fuel pins, fuel assemblies (FAs) and the entire core, as well as the HEFEST-FR module for calculating the melt retention and cooling down in the sodium-cooled reactor core catcher. The HEFEST-FR module implements the possibility to perform 2D simulation of the structural elements and fuel melt behavior in liquid metal cooled reactors. In accordance with the NTC NRB requirements, for the HEFEST-FR module to be used as part of the EUCLID/V2 code for analyzing the safety of fast reactors, it must be validated with the use of available experimental data; the validation shall be accompanied with an uncertainty and sensitivity analysis and assessment of the calculation result error. The article presents the results obtained from verification of the EUCLID/V2 integrated code HEFEST-FR module through solving the analytical problem of settling a stationary temperature of a homogeneous bounded cylinder uniformly heated from below with boundary conditions of the third kind and through solving the Stefan single-phase problem, as well as the results of validating the HEFEST-FR module based on the SCARABEE BF1 experiment. It is shown that the average absolute value by which the numerical calculation deviates from the analytical solution of the problem of settling a stationary temperature of a homogeneous bounded cylinder uniformly heated from below with boundary conditions of the third kind makes approximately 1.1 K. The maximum relative deviation of the results of calculations carried out using the computer program from the results of analytical solution of the Stefan problem (determination of the melt front) makes 0.46%. An assessment of the errors of modeling using the melt retention module as part of the EUCLID/V2 code (HEFEST-FR) based on the BF1 test of the SCARABEE experiment has shown that the temperature calculation error lies in the interval [‒82.3; 182.5] K, and the error of calculating the radial heat flux lies in the interval [‒55.2; 31.2] kW/m<sup>2</sup>.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1083 - 1093"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

For substantiating liquid metal cooled reactor plants, the EUCLID/V2 integrated code is being developed, and its verification and validation are carried out for certifying it at the Scientific and Technical Center for Nuclear and Radiation Safety (NTC NRB). One of the integrated code’s main parts is the severe accident block, which includes the SAFR module for calculating the destruction of fuel pins, fuel assemblies (FAs) and the entire core, as well as the HEFEST-FR module for calculating the melt retention and cooling down in the sodium-cooled reactor core catcher. The HEFEST-FR module implements the possibility to perform 2D simulation of the structural elements and fuel melt behavior in liquid metal cooled reactors. In accordance with the NTC NRB requirements, for the HEFEST-FR module to be used as part of the EUCLID/V2 code for analyzing the safety of fast reactors, it must be validated with the use of available experimental data; the validation shall be accompanied with an uncertainty and sensitivity analysis and assessment of the calculation result error. The article presents the results obtained from verification of the EUCLID/V2 integrated code HEFEST-FR module through solving the analytical problem of settling a stationary temperature of a homogeneous bounded cylinder uniformly heated from below with boundary conditions of the third kind and through solving the Stefan single-phase problem, as well as the results of validating the HEFEST-FR module based on the SCARABEE BF1 experiment. It is shown that the average absolute value by which the numerical calculation deviates from the analytical solution of the problem of settling a stationary temperature of a homogeneous bounded cylinder uniformly heated from below with boundary conditions of the third kind makes approximately 1.1 K. The maximum relative deviation of the results of calculations carried out using the computer program from the results of analytical solution of the Stefan problem (determination of the melt front) makes 0.46%. An assessment of the errors of modeling using the melt retention module as part of the EUCLID/V2 code (HEFEST-FR) based on the BF1 test of the SCARABEE experiment has shown that the temperature calculation error lies in the interval [‒82.3; 182.5] K, and the error of calculating the radial heat flux lies in the interval [‒55.2; 31.2] kW/m2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
期刊最新文献
Implementation Results for the Technology of Comprehensive Purification of Fire-Resistant Oils Numerical Model of a Heterogeneous Pyrolysis Reactor of Methane Carbon Dioxide Absorption by Microalgae: Analysis of Technologies and Energy Costs Design Calculation and Shaping of the Hydro-Steam Turbine Flow Path with Helical Nozzles Heat Exchange Inside a Horizontal Pipe at the Initial Section with Complete Condensation of R142b Freon Vapor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1