{"title":"Application of the Astronomical Theory of Climate Change to Explain Global Climate Events in the Late Pleistocene and Holocene","authors":"V. M. Fedorov, D. M. Frolov","doi":"10.1134/S0016793224700051","DOIUrl":null,"url":null,"abstract":"<p>The study demonstrates the synchronicity of the positive and negative phases of summer irradiation of the Northern Hemisphere in the precession cycle with periods of global climate warming and cooling for the Late Pleistocene and Holocene. The cold phase 50–41.5 ka BP corresponds to the Shestikhinsky cooling in Eastern Europe and the development of glaciation in North America. The warm phase 41–30 ka BP accounts for climate warming in Europe (Bryansk interstadial, Paudorf, Gotwei warming) and in North America (Plum Point Interstadial). The period of maximum development of glaciation in Europe and North America is synchronized with the cold phase 29.5–17.5 ka BP. The warm phase 17–5.5 ka BP is associated with the transition from the cold Pleistocene to the relatively warm Holocene. The Little Ice Age falls on the cold phase 5 ka BP – 5000 CE. It is expected that warming of the climate with respect to the present will correspond to the Warm Epoch 5000–13 000 CE. Changes in solar radiation arriving in the first astronomical half of the year in 5° latitude zones were determined for all astronomical months of the tropical year for climatic precession extrema. This makes it possible to compare spatiotemporal changes in Earth’s solar climate during years of climate precession extrema.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1033 - 1043"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700051","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study demonstrates the synchronicity of the positive and negative phases of summer irradiation of the Northern Hemisphere in the precession cycle with periods of global climate warming and cooling for the Late Pleistocene and Holocene. The cold phase 50–41.5 ka BP corresponds to the Shestikhinsky cooling in Eastern Europe and the development of glaciation in North America. The warm phase 41–30 ka BP accounts for climate warming in Europe (Bryansk interstadial, Paudorf, Gotwei warming) and in North America (Plum Point Interstadial). The period of maximum development of glaciation in Europe and North America is synchronized with the cold phase 29.5–17.5 ka BP. The warm phase 17–5.5 ka BP is associated with the transition from the cold Pleistocene to the relatively warm Holocene. The Little Ice Age falls on the cold phase 5 ka BP – 5000 CE. It is expected that warming of the climate with respect to the present will correspond to the Warm Epoch 5000–13 000 CE. Changes in solar radiation arriving in the first astronomical half of the year in 5° latitude zones were determined for all astronomical months of the tropical year for climatic precession extrema. This makes it possible to compare spatiotemporal changes in Earth’s solar climate during years of climate precession extrema.
研究表明,在岁差周期中,北半球夏季辐照的正负相位与全球气候变暖和变冷周期具有同步性。50-41.5 ka BP的冷期与东欧的Shestikhinsky冷却和北美冰川的发展相对应。41 ~ 30 ka BP暖相是欧洲(Bryansk interal、Paudorf、Gotwei变暖)和北美(Plum Point interal)气候变暖的原因。欧洲和北美冰川的最大发展期与29.5 ~ 17.5 ka BP的冷期同步。暖期17-5.5 ka BP与寒冷的更新世向相对温暖的全新世过渡有关。小冰期落在距今5ka -公元前5000年的寒冷阶段。预计相对于现在的气候变暖将对应于公元5000 - 13000年的暖期。在气候岁差极值的回归年的所有天文月份中,确定了5°纬度地区在上半天文年份到达的太阳辐射的变化。这使得在极端气候岁差年份比较地球太阳气候的时空变化成为可能。
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.