{"title":"A Misleading Naming Convention: De Sitter ‘Tachyonic’ Scalar Fields","authors":"Jean-Pierre Gazeau, Hamed Pejhan","doi":"10.1007/s10701-025-00821-w","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the concept of de Sitter (dS) ‘tachyonic’ scalar fields, characterized by discrete negative squared mass values, and assess their physical significance through a rigorous Wigner-inspired group-theoretical analysis. This perspective demonstrates that such fields, often misinterpreted as inherently unstable due to their mass parameter, are best understood within the framework of unitary irreducible representations (UIRs) of the dS group. The discrete mass spectrum arises naturally in this representation framework, offering profound insights into the interplay between dS relativity and quantum field theory. Contrary to their misleading nomenclature, we argue that the ‘mass’ parameter associated with these fields lacks intrinsic physical relevance, challenging traditional assumptions that link it to physical instability. Instead, any perceived instability originates from mismanagement of the system’s inherent gauge invariance rather than the fields themselves. A proper treatment of this gauge symmetry, particularly through the Gupta–Bleuler formalism, restores the expected characteristics of these fields as free quantum entities in a highly symmetric spacetime. This study seeks to dispel misconceptions surrounding dS ‘tachyonic’ fields, underscoring the importance of precise terminology and robust theoretical tools in addressing their unique properties.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00821-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the concept of de Sitter (dS) ‘tachyonic’ scalar fields, characterized by discrete negative squared mass values, and assess their physical significance through a rigorous Wigner-inspired group-theoretical analysis. This perspective demonstrates that such fields, often misinterpreted as inherently unstable due to their mass parameter, are best understood within the framework of unitary irreducible representations (UIRs) of the dS group. The discrete mass spectrum arises naturally in this representation framework, offering profound insights into the interplay between dS relativity and quantum field theory. Contrary to their misleading nomenclature, we argue that the ‘mass’ parameter associated with these fields lacks intrinsic physical relevance, challenging traditional assumptions that link it to physical instability. Instead, any perceived instability originates from mismanagement of the system’s inherent gauge invariance rather than the fields themselves. A proper treatment of this gauge symmetry, particularly through the Gupta–Bleuler formalism, restores the expected characteristics of these fields as free quantum entities in a highly symmetric spacetime. This study seeks to dispel misconceptions surrounding dS ‘tachyonic’ fields, underscoring the importance of precise terminology and robust theoretical tools in addressing their unique properties.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.