Evolution of a contact force network in a 2D granular assembly: II—the impact of particle plasticity

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2025-01-17 DOI:10.1007/s10035-025-01504-z
O. Kirstein, C. M. Wensrich
{"title":"Evolution of a contact force network in a 2D granular assembly: II—the impact of particle plasticity","authors":"O. Kirstein,&nbsp;C. M. Wensrich","doi":"10.1007/s10035-025-01504-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of particle plasticity on the mechanical behaviour of a model granular system under plane stress conditions simulated with the Discrete Element Method. A contact model transitioning from nonlinear elasticity to linear plastic deformation is integrated to analyse its effects on a 576-ball-bearing assembly subjected to varying loads. Simulations were conducted using Yade, comparing them with experimental results and traditional elastic models. The findings show that incorporating plastic deformation improves the accuracy of simulated force distributions and the material’s frictional response, particularly under high external loads. These results underscore the need for plasticity-inclusive models in realistic granular simulations, providing valuable insights for practical applications in industries handling high-stress granular systems.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01504-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of particle plasticity on the mechanical behaviour of a model granular system under plane stress conditions simulated with the Discrete Element Method. A contact model transitioning from nonlinear elasticity to linear plastic deformation is integrated to analyse its effects on a 576-ball-bearing assembly subjected to varying loads. Simulations were conducted using Yade, comparing them with experimental results and traditional elastic models. The findings show that incorporating plastic deformation improves the accuracy of simulated force distributions and the material’s frictional response, particularly under high external loads. These results underscore the need for plasticity-inclusive models in realistic granular simulations, providing valuable insights for practical applications in industries handling high-stress granular systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维颗粒装配中接触力网络的演化:ii -颗粒塑性的影响
本文采用离散元法研究了平面应力条件下颗粒塑性对模型颗粒系统力学行为的影响。采用从非线性弹性变形过渡到线性塑性变形的接触模型,分析了其对576球轴承组合在不同载荷作用下的影响。利用Yade软件进行了仿真,并与实验结果和传统弹性模型进行了比较。研究结果表明,结合塑性变形可以提高模拟力分布的准确性和材料的摩擦响应,特别是在高外部负载下。这些结果强调了在现实颗粒模拟中需要包含塑性的模型,为处理高应力颗粒系统的工业实际应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Experimental exploration of geometric cohesion and solid fraction in columns of highly non-convex Platonic polypods Particulate behaviour of soft granular materials: a case study on lentils Evolution of a contact force network in a 2D granular assembly: II—the impact of particle plasticity Heterogeneous and scale-dependent behaviour of an initially dense sand specimen in triaxial compression Pressure model and scaling laws in jammed bidisperse granular packings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1