{"title":"Exploring the sensing characteristics of Ni-Cr LDH, Ni-Cr-Al LDH, and Ni-Cr LDH/TiO2 for acetone and ethanol detection at room temperature","authors":"Seyedeh Ozra Gheibi, Abdollah Fallah Shojaei, Alireza Khorshidi, Seyed Mohsen Hosseini-Golgoo","doi":"10.1007/s00339-025-08238-y","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the distinctive characteristics of Layered Double Hydroxides (LDHs), extensive research has focused on their sensory properties and their application as electrochemical and gas sensors using various methods such as cataluminescence (CTL) and resistance measurements. In this study, we have rigorously examined the sensing capabilities of the Ni-Cr LDH sensor in the presence of acetone and ethanol at room temperature. Subsequently, we have compared these results with the sensing properties of the Ni-Cr-Al LDH and Ni-Cr LDH/TiO<sub>2</sub> sensors under identical conditions, leading to a comprehensive discussion on the impact of Al<sup>3+</sup> and titanium oxide on the sensors’ sensing properties. The Ni-Cr LDH/TiO<sub>2</sub> sensor showed better sensitivity to acetone and ethanol than the other two sensors. Besides, the Ni-Cr LDH/TiO<sub>2</sub> sensor exhibited shorter recovery and response times in the presence of acetone. Conversely, the Ni-Cr LDH sensor had quicker recovery and response times in the presence of ethanol, outperforming the other sensors.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08238-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the distinctive characteristics of Layered Double Hydroxides (LDHs), extensive research has focused on their sensory properties and their application as electrochemical and gas sensors using various methods such as cataluminescence (CTL) and resistance measurements. In this study, we have rigorously examined the sensing capabilities of the Ni-Cr LDH sensor in the presence of acetone and ethanol at room temperature. Subsequently, we have compared these results with the sensing properties of the Ni-Cr-Al LDH and Ni-Cr LDH/TiO2 sensors under identical conditions, leading to a comprehensive discussion on the impact of Al3+ and titanium oxide on the sensors’ sensing properties. The Ni-Cr LDH/TiO2 sensor showed better sensitivity to acetone and ethanol than the other two sensors. Besides, the Ni-Cr LDH/TiO2 sensor exhibited shorter recovery and response times in the presence of acetone. Conversely, the Ni-Cr LDH sensor had quicker recovery and response times in the presence of ethanol, outperforming the other sensors.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.