Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Fracture Pub Date : 2025-01-22 DOI:10.1007/s10704-024-00830-2
Ghita Bahaj Filali, Michel Coret, Adrien Leygue, Julien Réthoré
{"title":"Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads","authors":"Ghita Bahaj Filali,&nbsp;Michel Coret,&nbsp;Adrien Leygue,&nbsp;Julien Réthoré","doi":"10.1007/s10704-024-00830-2","DOIUrl":null,"url":null,"abstract":"<div><p>Many engineering structures are subjected to variable amplitude loading. A number of studies investigate the effects of post overload, even-though it is crucial to describe what occurs during the overloading. The aim of this paper is to provide effective independent descriptors based on purely kinematic measurements for the analysis of overloading. Fatigue tests were conducted on a SENT specimen. Investigating crack propagation was through direct measurements using Digital Image Correlation and Linear Elastic Fracture Mechanics via Williams’ series expansion. The higher terms in Williams’ series expansion, referred to as crack features were analyzed in cycles with and without overload. In a case without overload, all features exhibit a proportional regime. Singular value decomposition (SVD) analysis confirms that a single feature is adequate to characterize the mechanism. In a cycle with overload, the regime changes during the overloading phase, making it a signature of this phase. In this case, the SVD analysis reveals that two descriptors are needed for these cycles. A subsequent analysis allows the definition of two physically interpretable features. This work presents a robust method to identify, based on kinematic measurements and SVD analysis, independent descriptors for the processes that occur during a cycle with overload.\n</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00830-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many engineering structures are subjected to variable amplitude loading. A number of studies investigate the effects of post overload, even-though it is crucial to describe what occurs during the overloading. The aim of this paper is to provide effective independent descriptors based on purely kinematic measurements for the analysis of overloading. Fatigue tests were conducted on a SENT specimen. Investigating crack propagation was through direct measurements using Digital Image Correlation and Linear Elastic Fracture Mechanics via Williams’ series expansion. The higher terms in Williams’ series expansion, referred to as crack features were analyzed in cycles with and without overload. In a case without overload, all features exhibit a proportional regime. Singular value decomposition (SVD) analysis confirms that a single feature is adequate to characterize the mechanism. In a cycle with overload, the regime changes during the overloading phase, making it a signature of this phase. In this case, the SVD analysis reveals that two descriptors are needed for these cycles. A subsequent analysis allows the definition of two physically interpretable features. This work presents a robust method to identify, based on kinematic measurements and SVD analysis, independent descriptors for the processes that occur during a cycle with overload.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疲劳超载情况下运动场的可解释裂纹特征表示
许多工程结构都要承受变幅荷载。许多研究调查了超载后的影响,尽管描述超载期间发生的事情至关重要。本文的目的是为超载分析提供基于纯运动学测量的有效独立描述符。对SENT试样进行了疲劳试验。通过Williams级数扩展,使用数字图像相关和线弹性断裂力学直接测量裂缝扩展。威廉姆斯级数展开中的较高项,即裂纹特征,在有和没有过载的循环中进行了分析。在没有过载的情况下,所有的特征都呈现成比例。奇异值分解(SVD)分析证实单个特征足以表征该机制。在具有过载的循环中,状态在过载阶段发生变化,使其成为该阶段的签名。在这种情况下,SVD分析揭示了这些循环需要两个描述符。随后的分析允许定义两个物理上可解释的特征。这项工作提出了一种鲁棒的方法来识别,基于运动学测量和SVD分析,独立描述符的过程中发生的循环与过载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
期刊最新文献
Cohesive instability in elastomers: insights from a crosslinked Van der Waals fluid model Phase field modeling of anisotropic silicon crystalline cracking in 3D thin-walled photovoltaic laminates Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening Heterogeneous fracture toughness of human cortical bone tissue Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1