FeOOH-NiV LDH Heterostructure as Efficient Electrocatalyst for Oxygen Evolution Reaction

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-01-18 DOI:10.1007/s10562-024-04894-6
Shengwang Liu, Shixue Song, Yi Feng
{"title":"FeOOH-NiV LDH Heterostructure as Efficient Electrocatalyst for Oxygen Evolution Reaction","authors":"Shengwang Liu,&nbsp;Shixue Song,&nbsp;Yi Feng","doi":"10.1007/s10562-024-04894-6","DOIUrl":null,"url":null,"abstract":"<div><p>The oxygen evolution reaction (OER) with complex 4-electron transfer is a critical issue limiting the efficiency of electrolytic hydrogen production. Therefore, to develop efficient OER electrocatalysts for water splitting was necessary. Given the abundant unoccupied 3d orbitals of high-valent vanadium ions and the three-dimensional structure of nickel foam substrates, this study successfully fabricate hydroxy-iron oxide (FeOOH) modified nickel vanadium layered double hydroxide (NiV LDH) nanosheets array heterostructure electrocatalysts through surface modification method. By coupling FeOOH with NiV LDH, the electron structure between Fe, Ni, V, and O was finely regulated. Thanks to the strong electronic interactions at the heterostructure interface, the prepared heterostructure electrocatalysts exhibit outstanding electrocatalytic OER performance in 1 M KOH electrolyte. The heterostructure electrocatalyst demonstrated overpotentials of only 212, 252, and 279 mV at current densities of 10, 50, and 100 mA·cm<sup>−2</sup>, respectively, and a Tafel slope of only 71.37 mV·dec<sup>−1</sup>. This study provided a new strategy for developing efficient new OER heterostructure catalysts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04894-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen evolution reaction (OER) with complex 4-electron transfer is a critical issue limiting the efficiency of electrolytic hydrogen production. Therefore, to develop efficient OER electrocatalysts for water splitting was necessary. Given the abundant unoccupied 3d orbitals of high-valent vanadium ions and the three-dimensional structure of nickel foam substrates, this study successfully fabricate hydroxy-iron oxide (FeOOH) modified nickel vanadium layered double hydroxide (NiV LDH) nanosheets array heterostructure electrocatalysts through surface modification method. By coupling FeOOH with NiV LDH, the electron structure between Fe, Ni, V, and O was finely regulated. Thanks to the strong electronic interactions at the heterostructure interface, the prepared heterostructure electrocatalysts exhibit outstanding electrocatalytic OER performance in 1 M KOH electrolyte. The heterostructure electrocatalyst demonstrated overpotentials of only 212, 252, and 279 mV at current densities of 10, 50, and 100 mA·cm−2, respectively, and a Tafel slope of only 71.37 mV·dec−1. This study provided a new strategy for developing efficient new OER heterostructure catalysts.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
feoh - niv LDH异质结构作为析氧反应的高效电催化剂
具有复杂4电子转移的析氧反应(OER)是制约电解制氢效率的关键问题。因此,开发高效的OER水裂解电催化剂是必要的。考虑到高价钒离子丰富的未占据三维轨道和泡沫镍基底的三维结构,本研究通过表面修饰方法成功制备了羟基氧化铁(FeOOH)修饰的镍钒层状双氢氧化物(NiV LDH)纳米片阵列异质结构电催化剂。通过FeOOH与NiV LDH的耦合,Fe、Ni、V、O之间的电子结构得到了很好的调控。由于异质结构界面处存在较强的电子相互作用,制备的异质结构电催化剂在1 M KOH电解质中表现出优异的电催化OER性能。在电流密度为10、50和100 mA·cm−2时,异质结构电催化剂的过电位分别为212、252和279 mV, Tafel斜率仅为71.37 mV·dec−1。本研究为开发高效OER异质结构催化剂提供了新的思路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Hydroxylamine-Promoted Surface Fenton Reaction Over Iron-Montmorillonite for Organic Pollutant Degradation Towards Sustainable Biocatalysis: A Novel Thermostable Raw Starch-Digesting Amylase from Bacillus Cereus as a Green and Eco-Friendly Alternative for Starch Processing Morphology-Controlled ZIF-67 Derived Co@NC Catalysts for Ammonia Decomposition Facile Synthesis of MnO2 Catalysts on 3D Nickel Foam for Efficient Degradation of Rhodamine B by Activating Peroxymonosulfate Microwave-Assisted Biodiesel Production from Non-edible Neem Oil Using KOH@GO Catalyst Synthesized Via Modified Hummer’s Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1