Synthesis of TiC–NiCr Composite from Granular Mixture: Different Methods of Adding Binder Components

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2025-01-20 DOI:10.3103/S1061386224700250
B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov
{"title":"Synthesis of TiC–NiCr Composite from Granular Mixture: Different Methods of Adding Binder Components","authors":"B. S. Seplyarskii,&nbsp;R. A. Kochetkov,&nbsp;T. G. Lisina,&nbsp;N. I. Abzalov","doi":"10.3103/S1061386224700250","DOIUrl":null,"url":null,"abstract":"<p>The work investigated the modes of synthesis of titanium carbide with a nichrome binder from granular charges containing up to 30 wt % nichrome or a mixture of nickel and chromium powders taken in the same ratio as in the alloy. Using the conditions for the transition of combustion from conductive to convective mode, the impurity gas content in the studied mixtures was quantitatively assessed. It was shown that for mixtures of 0.6-mm granules, a safe conductive synthesis mode is realized. For charge of 1.7-mm granules, if a mixture of Ni and Cr powders was added to the initial sample, the convective combustion mode took place when Ti + C content was more than 90 wt %. When adding nichrome powder, the convective mode was caused by more than 80 wt % of Ti + C. Replacing the nichrome powder in the initial granular charge with mixture of Ni and Cr powders did not change the phase composition of the combustion products.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 4","pages":"273 - 279"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224700250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The work investigated the modes of synthesis of titanium carbide with a nichrome binder from granular charges containing up to 30 wt % nichrome or a mixture of nickel and chromium powders taken in the same ratio as in the alloy. Using the conditions for the transition of combustion from conductive to convective mode, the impurity gas content in the studied mixtures was quantitatively assessed. It was shown that for mixtures of 0.6-mm granules, a safe conductive synthesis mode is realized. For charge of 1.7-mm granules, if a mixture of Ni and Cr powders was added to the initial sample, the convective combustion mode took place when Ti + C content was more than 90 wt %. When adding nichrome powder, the convective mode was caused by more than 80 wt % of Ti + C. Replacing the nichrome powder in the initial granular charge with mixture of Ni and Cr powders did not change the phase composition of the combustion products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒状混合物合成TiC-NiCr复合材料:不同方法添加粘结剂组分
研究了用镍铬结合剂合成碳化钛的方式,从颗粒状电荷中含有高达30 wt %的镍铬或采用与合金中相同比例的镍和铬粉末的混合物。利用燃烧从导电模式向对流模式转变的条件,定量评价了所研究混合物中杂质气体的含量。结果表明,对于0.6 mm颗粒的混合物,实现了一种安全的导电合成模式。对于1.7 mm颗粒的装药,初始样品中加入Ni和Cr混合粉末,当Ti + C含量大于90 wt %时,发生对流燃烧模式。当添加镍铬粉时,超过80%的Ti + c会引起对流模式,用Ni和Cr粉的混合物代替初始颗粒装药中的镍铬粉不会改变燃烧产物的相组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Low-Temperature Sintering of SHS-Produced SiC-Based Porous Ceramics Features of Selective Laser Melting of SHS-Prepared Intermetallic Alloy Ti20Al3Si9 Cast Mo–Cr, W–Cr, and Cr–Al Master Alloys by Gravity-Assisted SHS Metallurgy Synthesis and Sintering of MgAlON: Influence of Sintering Additives Gravity-Assisted SHS Metallurgy of Cast High-Entropy Mo–Nb–Ta–(Cr,V,Zr,Hf) Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1