Low-cost and high-performance N-type Mg3Sb1.5Bi0.5-based Thermoelectric materials for medium and low temperature applications via Zn and Se co-doping

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Physics A Pub Date : 2025-01-21 DOI:10.1007/s00339-025-08255-x
Xin Yan, Huisong Zeng, Xueguo Liu, Xiaolan Zhang, Guocai Yuan, Tong Liu, Ruonan Min, Biyou Peng, Lihong Huang
{"title":"Low-cost and high-performance N-type Mg3Sb1.5Bi0.5-based Thermoelectric materials for medium and low temperature applications via Zn and Se co-doping","authors":"Xin Yan,&nbsp;Huisong Zeng,&nbsp;Xueguo Liu,&nbsp;Xiaolan Zhang,&nbsp;Guocai Yuan,&nbsp;Tong Liu,&nbsp;Ruonan Min,&nbsp;Biyou Peng,&nbsp;Lihong Huang","doi":"10.1007/s00339-025-08255-x","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the power factor is a crucial parameter in enhancing thermoelectric performance, making it essential to find an effective strategy for its enhancement. This study examines n-type Mg<sub>3</sub>Sb<sub>1.5</sub>Bi<sub>0</sub>.5-based thermoelectric materials doped with Zn and Se. Se is added to adjust the carrier concentration, while Zn is introduced into Mg<sub>3.2</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Se<sub>0.01</sub> to manipulate the carrier scattering mechanism. Experimental results indicate a significant increase in carrier mobility from 42.21 cm<sup>2</sup> V<sup>− 1</sup> s<sup>− 1</sup> to 73.92 cm<sup>2</sup> V<sup>− 1</sup> s<sup>− 1</sup>, leading to a substantial enhancement in electrical conductivity and power factor across the entire temperature range under investigation. Additionally, due to reduced lattice thermal conductivity resulting from the introduction of efficient phonon scattering centers in the Zn and Se co-doped sample, Mg<sub>3.18</sub>Zn<sub>0.02</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Se<sub>0.01</sub> attains a maximum <i>ZT</i> value of 1.77 at 623 K, resulting in a notable average <i>ZT</i> ≈ 1.24 over the temperature range of 300 to 673 K. Given its cost-effectiveness and low toxicity, this material is anticipated to replace the commercially available n-type Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectric materials commonly used at moderate and low temperatures.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08255-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the power factor is a crucial parameter in enhancing thermoelectric performance, making it essential to find an effective strategy for its enhancement. This study examines n-type Mg3Sb1.5Bi0.5-based thermoelectric materials doped with Zn and Se. Se is added to adjust the carrier concentration, while Zn is introduced into Mg3.2Sb1.5Bi0.49Se0.01 to manipulate the carrier scattering mechanism. Experimental results indicate a significant increase in carrier mobility from 42.21 cm2 V− 1 s− 1 to 73.92 cm2 V− 1 s− 1, leading to a substantial enhancement in electrical conductivity and power factor across the entire temperature range under investigation. Additionally, due to reduced lattice thermal conductivity resulting from the introduction of efficient phonon scattering centers in the Zn and Se co-doped sample, Mg3.18Zn0.02Sb1.5Bi0.49Se0.01 attains a maximum ZT value of 1.77 at 623 K, resulting in a notable average ZT ≈ 1.24 over the temperature range of 300 to 673 K. Given its cost-effectiveness and low toxicity, this material is anticipated to replace the commercially available n-type Bi2Te3-based thermoelectric materials commonly used at moderate and low temperatures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低成本和高性能的n型mg3sb1.5 bi0.5基热电材料通过Zn和Se共掺杂应用于中低温
提高功率因数是提高热电性能的关键参数,因此必须找到有效的提高功率因数的策略。本文研究了掺杂Zn和Se的n型mg3sb1.5 bi0.5基热电材料。在Mg3.2Sb1.5Bi0.49Se0.01中加入Se调节载流子浓度,在Mg3.2Sb1.5Bi0.49Se0.01中加入Zn调控载流子散射机制。实验结果表明,载流子迁移率从42.21 cm2 V−1 s−1显著增加到73.92 cm2 V−1 s−1,导致电导率和功率因数在整个温度范围内的显著增强。此外,由于在Zn和Se共掺杂样品中引入高效声子散射中心导致晶格热导率降低,Mg3.18Zn0.02Sb1.5Bi0.49Se0.01在623 K时达到最大ZT值1.77,从而在300 ~ 673 K温度范围内平均ZT≈1.24。鉴于其成本效益和低毒性,该材料有望取代市售的通常用于中低温的n型bi2te3基热电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
期刊最新文献
Elucidating the impact of laser shock peening on the biocompatibility and corrosion behaviour of wire arc additive manufactured SS316L bone staples Selective and sensitive detection of Pb (II) from aqueous solutions at optimized pH and analyzed for repeatability and reproducibility A comparative study of magneto-capacitance with magneto-electric coupling and transport response of 0.5LaFeO3-0.5PbZr0.58Ti0.42O3 nanocomposite Low-cost and high-performance N-type Mg3Sb1.5Bi0.5-based Thermoelectric materials for medium and low temperature applications via Zn and Se co-doping Effect of one-step electrodeposition time on the physical properties of tin sulfide thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1