{"title":"Advancements and Applications of 4D Bioprinting in Biomedical Science","authors":"Hakan Eskizengin, Can Ergun","doi":"10.1007/s10118-025-3259-0","DOIUrl":null,"url":null,"abstract":"<div><p>The constraints of traditional 3D bioprinting are overcome by 4D bioprinting integrating with adaptable materials over time, resulting in dynamic, compliant, and functional biological structures. This innovative approach to bioprinting holds great promise for tissue engineering, regenerative medicine, and advanced drug delivery systems. 4D bioprinting is a technology that allows for the extension of 3D bioprinting technology by making predesigned structures change after they are fabricated using smart materials that can alter their characteristics <i>via</i> stimulus, leading to transformation in healthcare, which is able to provide precise personalized effective medical treatment without any side effects. This review article concentrates on some recent developments and applications in the field of 4D bioprinting, which can pave the way for groundbreaking advancements in biomedical sciences. 4D printing is a new chapter in bioprinting that introduces dynamism and functional living biological structures. Therefore, smart materials and sophisticated printing techniques can eliminate the challenges associated with printing complex organs and tissues. However, the problems with this process are biocompatibility, immunogenicity, and scalability, which need to be addressed. Moreover, numerous obstacles have been encountered during its widespread adoption in clinical practice. Therefore, 4D bioprinting requires improvements in future material science innovations and further development in printers and manufacturing techniques to unlock its potential for better patient care and outcomes.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 1","pages":"18 - 39"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3259-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The constraints of traditional 3D bioprinting are overcome by 4D bioprinting integrating with adaptable materials over time, resulting in dynamic, compliant, and functional biological structures. This innovative approach to bioprinting holds great promise for tissue engineering, regenerative medicine, and advanced drug delivery systems. 4D bioprinting is a technology that allows for the extension of 3D bioprinting technology by making predesigned structures change after they are fabricated using smart materials that can alter their characteristics via stimulus, leading to transformation in healthcare, which is able to provide precise personalized effective medical treatment without any side effects. This review article concentrates on some recent developments and applications in the field of 4D bioprinting, which can pave the way for groundbreaking advancements in biomedical sciences. 4D printing is a new chapter in bioprinting that introduces dynamism and functional living biological structures. Therefore, smart materials and sophisticated printing techniques can eliminate the challenges associated with printing complex organs and tissues. However, the problems with this process are biocompatibility, immunogenicity, and scalability, which need to be addressed. Moreover, numerous obstacles have been encountered during its widespread adoption in clinical practice. Therefore, 4D bioprinting requires improvements in future material science innovations and further development in printers and manufacturing techniques to unlock its potential for better patient care and outcomes.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.