{"title":"Designing a Tibetan Tea Polysaccharide-Reinforced Bacterial Cellulose Nanofiber Dressing for Wound Treatment","authors":"Jiajia Zong, Haiyong Ao, Shiqing Zhou, Dingyun Wang, Xiaowei Xun, Zejing Chen, Bin Zhang, Jiaxin Li, Xidong Wu","doi":"10.1007/s12221-024-00786-z","DOIUrl":null,"url":null,"abstract":"<div><p>Tea polysaccharide (TP), as a naturally occurring bioactive polysaccharide derived from tea leaves, exhibits diverse pharmacological activities, which extensively utilized in healthcare products. However, previously reported applications did not include wound repair until now. In this study, TPs isolated from Tibetan tea was compound with bacterial cellulose (BC) via a novel membrane–liquid interface (MLI) culture resulted in obtained a novel TP-based dressing. The results of SEM and AFM confirmed successful attachment of TPs onto the surface of BC fibers. The obtained TP/BC composite exhibited robust thermal stability, excellent water absorption, acceptable water retention, and improved mechanical properties. The introduction of TP also conferred the dressing notable antioxidant properties (DPPH clearance rate was up to 85%), acceptable antibacterial properties (the antibacterial rate against <i>S. aureus</i> and<i> E. coli</i> were above 80%), and potent anti-inflammatory activity (the secretion of pro-inflammatory factor TNF-α was inhibited, while the secretion of anti-inflammatory factor TGF-β was promoted). Furthermore, the TP/BC composite exhibited improved cytocompatibility to promote NIH3T3 cells proliferation and spread compared with BC. All results indicated that the obtained TP/BC composite has an enormous potential for wound dressing, and the application of TP will be broadened.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"125 - 136"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00786-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Tea polysaccharide (TP), as a naturally occurring bioactive polysaccharide derived from tea leaves, exhibits diverse pharmacological activities, which extensively utilized in healthcare products. However, previously reported applications did not include wound repair until now. In this study, TPs isolated from Tibetan tea was compound with bacterial cellulose (BC) via a novel membrane–liquid interface (MLI) culture resulted in obtained a novel TP-based dressing. The results of SEM and AFM confirmed successful attachment of TPs onto the surface of BC fibers. The obtained TP/BC composite exhibited robust thermal stability, excellent water absorption, acceptable water retention, and improved mechanical properties. The introduction of TP also conferred the dressing notable antioxidant properties (DPPH clearance rate was up to 85%), acceptable antibacterial properties (the antibacterial rate against S. aureus and E. coli were above 80%), and potent anti-inflammatory activity (the secretion of pro-inflammatory factor TNF-α was inhibited, while the secretion of anti-inflammatory factor TGF-β was promoted). Furthermore, the TP/BC composite exhibited improved cytocompatibility to promote NIH3T3 cells proliferation and spread compared with BC. All results indicated that the obtained TP/BC composite has an enormous potential for wound dressing, and the application of TP will be broadened.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers