Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment

IF 20 0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-10-04 DOI:10.1038/s44160-024-00662-x
Ali Shayesteh Zeraati, Feng Li, Tartela Alkayyali, Roham Dorakhan, Erfan Shirzadi, Fatemeh Arabyarmohammadi, Colin P. O’Brien, Christine M. Gabardo, Jonathan Kong, Adnan Ozden, Mohammad Zargartalebi, Yong Zhao, Lizhou Fan, Panagiotis Papangelakis, Dongha Kim, Sungjin Park, Rui Kai Miao, Jonathan P. Edwards, Daniel Young, Alexander H. Ip, Edward H. Sargent, David Sinton
{"title":"Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment","authors":"Ali Shayesteh Zeraati, Feng Li, Tartela Alkayyali, Roham Dorakhan, Erfan Shirzadi, Fatemeh Arabyarmohammadi, Colin P. O’Brien, Christine M. Gabardo, Jonathan Kong, Adnan Ozden, Mohammad Zargartalebi, Yong Zhao, Lizhou Fan, Panagiotis Papangelakis, Dongha Kim, Sungjin Park, Rui Kai Miao, Jonathan P. Edwards, Daniel Young, Alexander H. Ip, Edward H. Sargent, David Sinton","doi":"10.1038/s44160-024-00662-x","DOIUrl":null,"url":null,"abstract":"The use of acidic electrolytes in CO2 reduction avoids costly carbonate loss. However, the energy efficiency of acid-fed electrolysers has been limited by high hydrogen production and operating potentials. We find that these stem from the lack of alkali cations at the catalyst surface, limiting CO2 and CO adsorption. In acid-fed membrane electrode assembly systems, the incorporation of these cations is challenging as there is no flowing catholyte. Here an interfacial cation matrix (ICM)–catalyst heterojunction is designed that directly attaches to the catalyst layer. The negatively charged nature of the ICM enriches the alkali cation concentration near the cathode surface, trapping generated hydroxide ions. This increases the local electric field and pH, increasing multi-carbon production. Integrating the ICM strategy with a tailored copper–silver catalyst enables selective ethanol production through a proton-spillover mechanism. We report a 45% CO2-to-ethanol Faradaic efficiency at 200 mA cm−2, carbon efficiency of 63%, full-cell ethanol energy efficiency of 15% (3-fold improvement over the best previous acidic CO2 reduction value) and energy cost of 260 GJ per tonne ethanol, the lowest among reported ethanol-producing CO2 electrolysers. Acidic CO2 electroreduction is carbon efficient but suffers from low energy efficiency and selectivity. Here an interfacial cation matrix is developed to enrich alkali cations and increase the local pH at a Cu–Ag catalyst surface, improving efficiency. A 45% CO2-to-ethanol Faradaic efficiency and 15% energy efficiency for ethanol production are achieved.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 1","pages":"75-83"},"PeriodicalIF":20.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00662-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of acidic electrolytes in CO2 reduction avoids costly carbonate loss. However, the energy efficiency of acid-fed electrolysers has been limited by high hydrogen production and operating potentials. We find that these stem from the lack of alkali cations at the catalyst surface, limiting CO2 and CO adsorption. In acid-fed membrane electrode assembly systems, the incorporation of these cations is challenging as there is no flowing catholyte. Here an interfacial cation matrix (ICM)–catalyst heterojunction is designed that directly attaches to the catalyst layer. The negatively charged nature of the ICM enriches the alkali cation concentration near the cathode surface, trapping generated hydroxide ions. This increases the local electric field and pH, increasing multi-carbon production. Integrating the ICM strategy with a tailored copper–silver catalyst enables selective ethanol production through a proton-spillover mechanism. We report a 45% CO2-to-ethanol Faradaic efficiency at 200 mA cm−2, carbon efficiency of 63%, full-cell ethanol energy efficiency of 15% (3-fold improvement over the best previous acidic CO2 reduction value) and energy cost of 260 GJ per tonne ethanol, the lowest among reported ethanol-producing CO2 electrolysers. Acidic CO2 electroreduction is carbon efficient but suffers from low energy efficiency and selectivity. Here an interfacial cation matrix is developed to enrich alkali cations and increase the local pH at a Cu–Ag catalyst surface, improving efficiency. A 45% CO2-to-ethanol Faradaic efficiency and 15% energy efficiency for ethanol production are achieved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面阳离子富集的碳高效乙醇电合成
在二氧化碳还原中使用酸性电解质避免了代价高昂的碳酸盐损失。然而,酸供电解槽的能量效率受到高产氢率和操作电位的限制。我们发现这是由于催化剂表面缺乏碱阳离子,限制了CO2和CO的吸附。在酸供膜电极组装系统中,由于没有流动的阴极电解质,这些阳离子的结合是具有挑战性的。这里设计了一个界面阳离子矩阵(ICM) -催化剂异质结,它直接附着在催化剂层上。ICM的负电荷特性使阴极表面附近的碱阳离子浓度增加,从而捕获生成的氢氧化物离子。这增加了局部电场和pH值,增加了多碳产量。将ICM策略与定制的铜银催化剂相结合,可以通过质子溢出机制实现选择性乙醇生产。我们报告了在200毫安厘米−2下45%的二氧化碳到乙醇的法拉第效率,63%的碳效率,15%的全电池乙醇能量效率(比之前最好的酸性二氧化碳还原值提高了3倍)和每吨乙醇260吉焦的能量成本,这是报道的乙醇生产二氧化碳电解槽中最低的。酸性CO2电还原是一种碳效率高的方法,但存在能量效率低和选择性差的问题。在这里,开发了界面阳离子基质来富集碱阳离子并增加Cu-Ag催化剂表面的局部pH,从而提高效率。二氧化碳转化为乙醇的法拉第效率为45%,乙醇生产的能源效率为15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
Catalytic asymmetric hydroalkylation of 1,1-dialkyl-substituted alkenes with unactivated alkyl electrophiles Synthesis covered in 2025 Triphasic synthesis of MXenes with uniform and controlled halogen terminations Customized cycloparaphenylene skeletons prepared via the intramolecular coupling of extended biphen[n]arenes Synthesis of wafer-scale uniaxially oriented tellurium films via molecular engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1