Jaesoo Jung, Edward N Schmidt, Hua-Chien Chang, Zeinab Jame-Chenarboo, Jhon R Enterina, Kelli A McCord, Taylor E Gray, Lauren Kageler, Chris D St Laurent, Chao Wang, Ryan A Flynn, Peng Wu, Kay-Hooi Khoo, Matthew S Macauley
{"title":"Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs.","authors":"Jaesoo Jung, Edward N Schmidt, Hua-Chien Chang, Zeinab Jame-Chenarboo, Jhon R Enterina, Kelli A McCord, Taylor E Gray, Lauren Kageler, Chris D St Laurent, Chao Wang, Ryan A Flynn, Peng Wu, Kay-Hooi Khoo, Matthew S Macauley","doi":"10.1021/acschembio.4c00677","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate sulfation plays a pivotal role in modulating the strength of Siglec-glycan interactions. Recently, new aspects of Siglec binding to sulfated cell surface carbohydrates have been discovered, but the class of glycan presenting these sulfated Siglec ligands has not been fully elucidated. In this study, the contribution of different classes of glycans to <i>cis</i> and <i>trans</i> Siglec ligands was investigated within cells expressing the carbohydrate sulfotransferase 1 (CHST1) or CHST2. For some Siglecs, the glycan class mediating binding was clear, such as <i>O</i>-glycans for Siglec-7 and <i>N</i>-glycans for Siglec-2 and Siglec-9. Both <i>N</i>-glycans and mucin-type <i>O</i>-glycans contributed to ligands for Siglec-3, -5, -8, and -15. However, significant levels of Siglec-3 and -8 ligands remained in CHST1-expressing cells lacking complex <i>N</i>-glycans and mucin-type <i>O</i>-glycans. A combination of genetic, pharmacological, and enzymatic treatment strategies ruled out heparan sulfates and glycoRNA as contributors, although Siglec-8 did exhibit some binding to glycolipids. Genetic disruption of <i>O</i>-mannose glycans within CHST1-expressing cells had a small but significant impact on Siglec-3 and -8 binding, demonstrating that this class of glycans can present sulfated Siglec ligands. We also investigated the ability of sulfated <i>cis</i> ligands to mask Siglec-3 and Siglec-7. For Siglec-7, <i>cis</i> ligands were again found to be mucin-type <i>O</i>-glycans. While <i>N</i>-glycans were the major sulfated <i>trans</i> ligands for Siglec-3, disruption of complex mucin-type <i>O</i>-glycans had the largest impact on Siglec-3 masking. Overall, this study enhances our knowledge of the types of sulfated glycans that can serve as Siglec ligands.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00677","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbohydrate sulfation plays a pivotal role in modulating the strength of Siglec-glycan interactions. Recently, new aspects of Siglec binding to sulfated cell surface carbohydrates have been discovered, but the class of glycan presenting these sulfated Siglec ligands has not been fully elucidated. In this study, the contribution of different classes of glycans to cis and trans Siglec ligands was investigated within cells expressing the carbohydrate sulfotransferase 1 (CHST1) or CHST2. For some Siglecs, the glycan class mediating binding was clear, such as O-glycans for Siglec-7 and N-glycans for Siglec-2 and Siglec-9. Both N-glycans and mucin-type O-glycans contributed to ligands for Siglec-3, -5, -8, and -15. However, significant levels of Siglec-3 and -8 ligands remained in CHST1-expressing cells lacking complex N-glycans and mucin-type O-glycans. A combination of genetic, pharmacological, and enzymatic treatment strategies ruled out heparan sulfates and glycoRNA as contributors, although Siglec-8 did exhibit some binding to glycolipids. Genetic disruption of O-mannose glycans within CHST1-expressing cells had a small but significant impact on Siglec-3 and -8 binding, demonstrating that this class of glycans can present sulfated Siglec ligands. We also investigated the ability of sulfated cis ligands to mask Siglec-3 and Siglec-7. For Siglec-7, cis ligands were again found to be mucin-type O-glycans. While N-glycans were the major sulfated trans ligands for Siglec-3, disruption of complex mucin-type O-glycans had the largest impact on Siglec-3 masking. Overall, this study enhances our knowledge of the types of sulfated glycans that can serve as Siglec ligands.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.