{"title":"Advanced Nodular Thin Dense Chromium Coating: Superior Corrosion Resistance.","authors":"Ehsan Rahimi, Thijs Nijdam, Adwait Jahagirdar, Esteban Broitman, Arjan Mol","doi":"10.1021/acsami.4c19897","DOIUrl":null,"url":null,"abstract":"<p><p>Chromium-based functional coatings (CFCs) are widely recognized for their outstanding wear and corrosion resistance across diverse industrial sectors. However, despite advancements in deposition techniques and microstructural enhancements, many contemporary CFCs remain vulnerable to degradation in highly corrosive environments. For the first time, this research delivers a thorough characterization of the corrosion resistance of advanced CFCs, focusing on the performance of a 5 μm thin dense chromium (TDC) coating. These TDCs exhibit a distinctive, uniform nodular microstructure, characterized by approximately 3.6 μm nodules composed of defect-free near-nanocrystalline grains (227 ± 75 nm) plus enhanced electrochemical nobility. This structure promotes the rapid formation of a stable, dense bilayer oxide, resulting in a remarkably low corrosion susceptibility, effectively impeding both charge transfer and mass transport, particularly the diffusion of Cl<sup>-</sup> ions. Furthermore, the coating sustains an exceptionally high polarization resistance over extended exposure times in aqueous NaCl electrolyte. These findings offer critical insights into the design of CFCs optimized for extreme environmental durability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19897","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromium-based functional coatings (CFCs) are widely recognized for their outstanding wear and corrosion resistance across diverse industrial sectors. However, despite advancements in deposition techniques and microstructural enhancements, many contemporary CFCs remain vulnerable to degradation in highly corrosive environments. For the first time, this research delivers a thorough characterization of the corrosion resistance of advanced CFCs, focusing on the performance of a 5 μm thin dense chromium (TDC) coating. These TDCs exhibit a distinctive, uniform nodular microstructure, characterized by approximately 3.6 μm nodules composed of defect-free near-nanocrystalline grains (227 ± 75 nm) plus enhanced electrochemical nobility. This structure promotes the rapid formation of a stable, dense bilayer oxide, resulting in a remarkably low corrosion susceptibility, effectively impeding both charge transfer and mass transport, particularly the diffusion of Cl- ions. Furthermore, the coating sustains an exceptionally high polarization resistance over extended exposure times in aqueous NaCl electrolyte. These findings offer critical insights into the design of CFCs optimized for extreme environmental durability.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.