Mina Shahriari-Khalaji, Mamoona Sattar, Huidan Wei, Mastafa H Al-Musawi, Yahiya Ibrahim Yahiya, Sumyah Hasan Torki, Shengyuan Yang, Mohamadreza Tavakoli, Marjan Mirhaj
{"title":"Physicochemically Cross-linked Injectable Hydrogel: an Adhesive Skin Substitute for Burned Wound Therapy.","authors":"Mina Shahriari-Khalaji, Mamoona Sattar, Huidan Wei, Mastafa H Al-Musawi, Yahiya Ibrahim Yahiya, Sumyah Hasan Torki, Shengyuan Yang, Mohamadreza Tavakoli, Marjan Mirhaj","doi":"10.1021/acsabm.4c01592","DOIUrl":null,"url":null,"abstract":"<p><p>Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable. Herein, we developed a natural physicochemically cross-linked adhesive injectable skin substitute (SS) comprising chitosan (Ch) and silk fibroin (SF), cross-linked with tannic acid (TA) through hydrogen bonding, and incorporated with fresh platelet-rich fibrin (FPRF). SF was also chimerically cross-linked with riboflavin (RF) under visible light to ensure desirable biodegradability rate and nontoxicity. Double cross-linked SS exhibited a semibilayer (SBSS) structure with smaller pores in the upper layer. In the CaCl<sub>2</sub>-treated FPRF, the activated platelets augmented vascular endothelial growth factor (VEGF) and platelet-derived GF (PDGF) release. The resultant SBSS possessed optimal adhesion, hemocompatibility, and significant antibacterial and antioxidant activities (<i>P</i> ≤ 0.05). The rat liver injury model confirmed the rapid hemostatic effect of SBSS. Furthermore, the bottom layer of SBSS promoted L929 fibroblast growth, proliferation, and migration. SBSS-treated wounds showed lower inflammatory cells, earlier epithelialization, significant angiogenesis, and faster healing. The proposed SBSS could be an ideal remedy for burn wound therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1292-1306"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable. Herein, we developed a natural physicochemically cross-linked adhesive injectable skin substitute (SS) comprising chitosan (Ch) and silk fibroin (SF), cross-linked with tannic acid (TA) through hydrogen bonding, and incorporated with fresh platelet-rich fibrin (FPRF). SF was also chimerically cross-linked with riboflavin (RF) under visible light to ensure desirable biodegradability rate and nontoxicity. Double cross-linked SS exhibited a semibilayer (SBSS) structure with smaller pores in the upper layer. In the CaCl2-treated FPRF, the activated platelets augmented vascular endothelial growth factor (VEGF) and platelet-derived GF (PDGF) release. The resultant SBSS possessed optimal adhesion, hemocompatibility, and significant antibacterial and antioxidant activities (P ≤ 0.05). The rat liver injury model confirmed the rapid hemostatic effect of SBSS. Furthermore, the bottom layer of SBSS promoted L929 fibroblast growth, proliferation, and migration. SBSS-treated wounds showed lower inflammatory cells, earlier epithelialization, significant angiogenesis, and faster healing. The proposed SBSS could be an ideal remedy for burn wound therapy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.