Bottlebrush Pastes as a Platform for Solvent-Free, Injectable, and Shape-Persistent Materials with Tissue-Mimetic Viscoelasticity.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-01-22 DOI:10.1021/acsami.4c19850
Jessica Garcia, Foad Vashahi, Akmal Z Umarov, Georgiy G Ageev, Ioannis Moutsios, Dimitri A Ivanov, Andrey V Dobrynin, Sergei S Sheiko
{"title":"Bottlebrush Pastes as a Platform for Solvent-Free, Injectable, and Shape-Persistent Materials with Tissue-Mimetic Viscoelasticity.","authors":"Jessica Garcia, Foad Vashahi, Akmal Z Umarov, Georgiy G Ageev, Ioannis Moutsios, Dimitri A Ivanov, Andrey V Dobrynin, Sergei S Sheiko","doi":"10.1021/acsami.4c19850","DOIUrl":null,"url":null,"abstract":"<p><p>Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A-<i>g</i>-B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing. The densely grafted PEG brush is leveraged to architecturally control both the rate and degree of crystallization of PLA grafts, offering tunability of mechanical properties as a function of architecture and time in a single-component solvent-free system covering a broad range of aggregation states comprising fluid-, paste-, and elastomer-like behaviors with modulus ranging from 1 to 50 kPa. The PLA-<i>g</i>-PEG pastes are particularly interesting, as they combine solvent-free injectability and time-controlled formation of shape-persistent elastomers at constant temperature. This molecular paste platform may advance reconstructive surgery, drug depots, and tissue engineering.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19850","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A-g-B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing. The densely grafted PEG brush is leveraged to architecturally control both the rate and degree of crystallization of PLA grafts, offering tunability of mechanical properties as a function of architecture and time in a single-component solvent-free system covering a broad range of aggregation states comprising fluid-, paste-, and elastomer-like behaviors with modulus ranging from 1 to 50 kPa. The PLA-g-PEG pastes are particularly interesting, as they combine solvent-free injectability and time-controlled formation of shape-persistent elastomers at constant temperature. This molecular paste platform may advance reconstructive surgery, drug depots, and tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Advanced Nodular Thin Dense Chromium Coating: Superior Corrosion Resistance. Dual Interface Modification for Reduced Nonradiative Recombination in n-i-p Methylammonium-Free Perovskite Solar Cells. Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy. Bottlebrush Pastes as a Platform for Solvent-Free, Injectable, and Shape-Persistent Materials with Tissue-Mimetic Viscoelasticity. Flexible Eyelid Pressure and Motion Dual-Mode Sensor Using Electric Breakdown-Induced Piezoresistivity and Electrical Potential Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1