Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde
{"title":"Use of laser-ablation inductively-coupled mass spectroscopy for analysis of selenosugars bound to proteins.","authors":"Katarzyna Bierla, Joanna Szpunar, Ryszard Lobinski, Roger A Sunde","doi":"10.1093/mtomcs/mfaf002","DOIUrl":null,"url":null,"abstract":"<p><p>We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds. To demonstrate selenosugar binding to proteins, aqueous liver extracts from animals fed Se-adequate and high-Se were subjected to SDS-PAGE and Native-PAGE with and without pretreatment with β-mercaptoethanol (βME). The separated proteins were then electrophoretically transferred to membranes, and the membranes subsequently were subjected to laser-ablation inductively-coupled mass spectroscopy (LA-ICP-MS) analysis of 78Se profiles. Without βME treatment, 78Se was widely distributed across the molecular weight profile for both SDS-PAGE and Native-PAGE, whereas βME pretreatment dramatically reduced 78Se binding, reducing the profile to true Sec-selenoproteins. This reduction was ∼50% for both high-Se rat and turkey extracts. The increased 78Se in non-βME treated samples was distributed across the full profile. The use of LA-ICP-MS indicates that selenosugar residues are bound to protein subunits of multiple sizes, and that targeted attachment of selenosugars to a single or limited number of protein subunits does not occur.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfaf002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds. To demonstrate selenosugar binding to proteins, aqueous liver extracts from animals fed Se-adequate and high-Se were subjected to SDS-PAGE and Native-PAGE with and without pretreatment with β-mercaptoethanol (βME). The separated proteins were then electrophoretically transferred to membranes, and the membranes subsequently were subjected to laser-ablation inductively-coupled mass spectroscopy (LA-ICP-MS) analysis of 78Se profiles. Without βME treatment, 78Se was widely distributed across the molecular weight profile for both SDS-PAGE and Native-PAGE, whereas βME pretreatment dramatically reduced 78Se binding, reducing the profile to true Sec-selenoproteins. This reduction was ∼50% for both high-Se rat and turkey extracts. The increased 78Se in non-βME treated samples was distributed across the full profile. The use of LA-ICP-MS indicates that selenosugar residues are bound to protein subunits of multiple sizes, and that targeted attachment of selenosugars to a single or limited number of protein subunits does not occur.